94 research outputs found

    Option selection in whole-body rotation movements in gymnastics

    Get PDF
    Abstract When a gymnast performs a somersault, the linear and angular momentum along with a particular control of inertia during the flight phase constrain the possibilities for action. Given the complexity and dynamic nature of the human moving system, one could argue that there exist a particular amount of stable coordination states when performing somersaults. The goal of this study was to explore the manifold of movement options and coordination states along with their differentiating parameters for a single somersault in gymnastics based on a simple mathematical model reflecting gymnast’s rotation behavior during the flight phase. Biomechanical parameters determining rotation behavior during a somersault were systematically varied with regard to a particular set of biomechanical constraints defining a successful somersault performance. Batch simulations revealed that from 10229760 simulation cycles only 655346 (approximately 6.41%) led to successful somersault performance. A subsequent analysis of the movement option landscape for the optimum angular momentum revealed ten coordination states for a single somersault that could be clearly distinguished based on the simulation parameters. Taken the results together, it becomes apparent that it may be most advisable to perform a single somersault with a larger moment of inertia when achieving the tucked position, a longer duration to achieve the tucked position, a longer duration of staying tucked, and an intermediate moment of inertia during landing. This strategy comprises the largest amount of movement options associated with an upright landing and thus the highest probability of success when performing a single somersault

    Differences in carotid arterial morphology and composition between individuals with and without obstructive coronary artery disease: A cardiovascular magnetic resonance study

    Get PDF
    Objective: We sought to determine differences with cardiovascular magnetic resonance (CMR) in the morphology and composition of the carotid arteries between individuals with angiographically-defined obstructive coronary artery disease (CAD, = 50% stenosis, cases) and those with angiographically normal coronaries (no lumen irregularities, controls). Methods and results: 191 participants (50.3% female; 50.8% CAD cases) were imaged with a multi-sequence, carotid CMR protocol at 1.5T. For each segment of the carotid, lumen area, wall area, total vessel area (lumen area + wall area), mean wall thickness and the presence or absence of calcification and lipid-rich necrotic core were recorded bilaterally. In male CAD cases compared to male controls, the distal bulb had a significantly smaller lumen area (60.0 [plus or minus] 3.1 vs. 79.7 [plus or minus] 3.2 mm[super]2, p less than 0.001) and total vessel area (99.6 [plus or minus] 4.0 vs. 119.8 [plus or minus] 4.1 mm[super]2; p less than 0.001), and larger mean wall thickness (1.25 [plus or minus] 0.03 vs. 1.11 [plus or minus] 0.03 mm; p = 0.002). Similarly, the internal carotid had a smaller lumen area (37.5 [plus or minus] 1.8 vs. 44.6 [plus or minus] 1.8 mm[super]2; p = 0.006) and smaller total vessel area (64.0 [plus or minus] 2.3 vs. 70.9 [plus or minus] 2.4 mm[super]2; p = 0.04). These metrics were not significantly different between female groups in the distal bulb and internal carotid or for either gender in the common carotid. Male CAD cases had an increased prevalence of lipid-rich necrotic core (49.0% vs. 19.6%; p = 0.003), while calcification was more prevalent in both male (46.9% vs. 17.4%; p = 0.002) and female (33.3% vs. 14.6%; p = 0.031) CAD cases compared to controls. Conclusion: Males with obstructive CAD compared to male controls had carotid bulbs and internal carotid arteries with smaller total vessel and lumen areas, and an increased prevalence of lipid-rich necrotic core. Carotid calcification was related to CAD status in both males and females. Carotid CMR identifies distinct morphological and compositional differences in the carotid arteries between individuals with and without angiographically-defined obstructive CAD.Carotid Atherosclerosis (MRI) Progression Study (CAMPS, HL076378) and Cardiovascular Research Training Program (T-32, HL07838); and the General Clinical Research Center at the Wake Forest University School of Medicine (M01 RR-07122)

    A comparative study on the efficacy of 10% hypertonic saline and equal volume of 20% mannitol in the treatment of experimentally induced cerebral edema in adult rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertonic saline and mannitol are commonly used in the treatment of cerebral edema and elevated intracranial pressure (ICP) at present. In this connection, 10% hypertonic saline (HS) alleviates cerebral edema more effectively than the equal volume of 20% mannitol. However, the exact underlying mechanism for this remains obscure. This study aimed to explore the possible mechanism whereby 10% hypertonic saline can ameliorate cerebral edema more effectively than mannitol.</p> <p>Results</p> <p>Adult male Sprague-Dawley (SD) rats were subjected to permanent right-sided middle cerebral artery occlusion (MCAO) and treated with a continuous intravenous infusion of 10% HS, 20% mannitol or D-[1-<sup>3</sup>H(N)]-mannitol. Brain water content (BWC) as analyzed by wet-to-dry ratios in the ischemic hemisphere of SD rats decreased more significantly after 10% HS treatment compared with 20% mannitol. Concentration of serum Na<sup>+ </sup>and plasma crystal osmotic pressure of the 10% HS group at 2, 6, 12 and 18 h following permanent MCAO increased significantly when compared with 20% mannitol treated group. Moreover, there was negative correlation between the BWC of the ipsilateral ischemic hemisphere and concentration of serum Na<sup>+</sup>, plasma crystal osmotic pressure and difference value of concentration of serum Na<sup>+ </sup>and concentration of brain Na<sup>+ </sup>in ipsilateral ischemic hemisphere in the 10% HS group at the various time points after MCAO. A remarkable finding was the progressive accumulation of mannitol in the ischemic brain tissue.</p> <p>Conclusions</p> <p>We conclude that 10% HS is more effective in alleviating cerebral edema than the equal volume of 20% mannitol. This is because 10% HS contributes to establish a higher osmotic gradient across BBB and, furthermore, the progressive accumulation of mannitol in the ischemic brain tissue counteracts its therapeutic efficacy on cerebral edema.</p

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging

    Pharmacogenetics in schizophrenia: a review of clozapine studies

    Full text link

    A systematic review of non-hormonal treatments of vasomotor symptoms in climacteric and cancer patients

    Get PDF

    Synthesis, metal ion binding, and biological evaluation of new anticancer 2-(2'-hydroxyphenyl)benzoxazole analogs of UK-1.

    No full text
    UK-1 is a bis(benzoxazole) natural product displaying activity against a wide range of human cancer cell lines. A simplified analog of UK-1, 4-carbomethoxy-2-(2'-hydroxyphenyl)benzoxazole, was previously found to be almost as active as UK-1 against cancer cell lines, and similar to the natural product, formed complexes with a variety of metal ions such as Mg2+ and Zn2+. A series of 4-substituted-2-(2'-hydroxyphenyl)benzoxazole analogs of this 'minimal pharmacophore' of UK-1 were prepared. The anti-cancer activity of these analogs was examined in breast and lung cancer cell lines. Spectrophotometric titrations in methanol were carried out in order to assess the ability of UK-1 and these analogs to coordinate with Mg2+ and Cu2+ ions. Although none of the new analogs were more cytotoxic than 4-carbomethoxy-2-(2'-hydroxyphenyl)benzoxazole, some analogs were identified that display similar cytotoxicity to this simplified UK-1 analog with improved water solubility. UK-1 and all of these new analogs bind Cu2+ ions better than Mg2+ ions, and the nature of the 4-substituent is important for the Mg2+ ion binding ability of these 2-(2'-hydroxyphenyl)benzoxazoles. Previous studies of a limited number of UK-1 analogs demonstrated a correlation between Mg2+ ion binding ability and cytotoxicity; however, within this series of 4-substituted-2-(2'-hydroxyphenyl)benzoxazoles the variations in cytotoxicity do not correlate with either Mg2+ or Cu2+ ion binding ability. These results, together with recent ESI-MS studies of Cu2+-mediated DNA binding by UK-1 and analogs, indicate that UK-1 and analogs may exert their cytotoxic effects by interaction with Cu2+ or other transition metal ions, rather than Mg2+, and that metal ion-mediated DNA binding, rather than metal ion binding affinity, is important for the cytotoxic effect of these compounds. The potential role of Cu2+ ions in the cytotoxic action of UK-1 is further supported by the observation that UK-1 in the presence of Cu2+ displays enhanced cytotoxicity to MCF-7 and A549 cells when compared to UK-1 alone
    corecore