35 research outputs found
Acute febrile illness is associated with Rickettsia spp infection in dogs
BACKGROUND: Rickettsia conorii is transmitted by Rhipicephalus sanguineus ticks and causes Mediterranean Spotted Fever (MSF) in humans. Although dogs are considered the natural host of the vector, the clinical and epidemiological significance of R. conorii infection in dogs remains unclear. The aim of this prospective study was to investigate whether Rickettsia infection causes febrile illness in dogs living in areas endemic for human MSF. METHODS: Dogs from southern Italy with acute fever (n = 99) were compared with case–control dogs with normal body temperatures (n = 72). Serology and real-time PCR were performed for Rickettsia spp., Ehrlichia canis, Anaplasma phagocytophilum/A. platys and Leishmania infantum. Conventional PCR was performed for Babesia spp. and Hepatozoon spp. Acute and convalescent antibodies to R. conorii, E. canis and A. phagocytophilum were determined. RESULTS: The seroprevalence rates at first visit for R. conorii, E. canis, A. phagocytophilum and L. infantum were 44.8%, 48.5%, 37.8% and 17.6%, respectively. The seroconversion rates for R. conorii, E. canis and A. phagocytophilum were 20.7%, 14.3% and 8.8%, respectively. The molecular positive rates at first visit for Rickettsia spp., E. canis, A. phagocytophilum, A. platys, L. infantum, Babesia spp. and Hepatozoon spp. were 1.8%, 4.1%, 0%, 2.3%, 11.1%, 2.3% and 0.6%, respectively. Positive PCR for E. canis (7%), Rickettsia spp. (3%), Babesia spp. (4.0%) and Hepatozoon spp. (1.0%) were found only in febrile dogs. The DNA sequences obtained from Rickettsia and Babesia PCRs positive samples were 100% identical to the R. conorii and Babesia vogeli sequences in GenBank®, respectively. Febrile illness was statistically associated with acute and convalescent positive R. conorii antibodies, seroconversion to R. conorii, E. canis positive PCR, and positivity to any tick pathogen PCRs. Fourteen febrile dogs (31.8%) were diagnosed with Rickettsia spp. infection based on seroconversion and/or PCR while only six afebrile dogs (12.5%) seroconverted (P = 0.0248). The most common clinical findings of dogs with Rickettsia infection diagnosed by seroconversion and/or PCR were fever, myalgia, lameness, elevation of C-reactive protein, thrombocytopenia and hypoalbuminemia. CONCLUSIONS: This study demonstrates acute febrile illness associated with Rickettsia infection in dogs living in endemic areas of human MSF based on seroconversion alone or in combination with PCR
The Transcriptome Analysis of Strongyloides stercoralis L3i Larvae Reveals Targets for Intervention in a Neglected Disease
BackgroundStrongyloidiasis is one of the most neglected diseases distributed worldwide with endemic areas in developed countries, where chronic infections are life threatening. Despite its impact, very little is known about the molecular biology of the parasite involved and its interplay with its hosts. Next generation sequencing technologies now provide unique opportunities to rapidly address these questions.Principal FindingsHere we present the first transcriptome of the third larval stage of S. stercoralis using 454 sequencing coupled with semi-automated bioinformatic analyses. 253,266 raw sequence reads were assembled into 11,250 contiguous sequences, most of which were novel. 8037 putative proteins were characterized based on homology, gene ontology and/or biochemical pathways. Comparison of the transcriptome of S. strongyloides with those of other nematodes, including S. ratti, revealed similarities in transcription of molecules inferred to have key roles in parasite-host interactions. Enzymatic proteins, like kinases and proteases, were abundant. 1213 putative excretory/secretory proteins were compiled using a new pipeline which included non-classical secretory proteins. Potential drug targets were also identified.ConclusionsOverall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic and metabolomic explorations of S. stercoralis, as well as a basis for applied outcomes, such as the development of novel methods of intervention against this neglected parasite
Large-scale unit commitment under uncertainty: an updated literature survey
The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
Human Papilloma Virus prevalence and type-specific relative contribution in invasive cervical cancer specimens from Italy
Background: Cervical cancer represents an important global public health problem. It is the 2(nd) most common cancer among women worldwide. Human Papillomavirus (HPV) infection is now well-established as a necessary cause of invasive cervical cancer (ICC) development. Only a few studies on HPV prevalence and type-specific distribution in ICC have been conducted in Italy. Aim: To describe the prevalence of HPV and the HPV type-specific distribution in ICC cases identified in Rome, Italy. Methods: 140 paraffin embedded tissue blocks of primary ICC diagnosed between 2001 and 2006 were identified at the Regina Elena Cancer Institute in Rome (Italy). HPV was detected through amplification of HPV DNA using SPF-10 HPV broad-spectrum primers followed by DEIA and then genotyping by LiPA(25) (version 1). Results: 134 cases were considered suitable for HPV DNA detection after histological evaluation; and overall, 90.3% (121/134) HPV prevalence was detected. 111 cases had a single HPV type, 4 cases had an uncharacterized type (HPVX) and 6 cases had multiple HPV infections. The five most common single HPV types among positive cases were: HPV16 (71/121; 58.7%), HPV18 (12/121; 9.9%), HPV31, HPV45 and HPV58 (5/121; 4.1% each). 2 (1.5%) of the single infections and 2 (1.5%) of the multiple infections contained low risk types. Statistically significant differences in the relative contribution of HPV18 were found when comparing squamous cell carcinomas with adenocarcinomas. Conclusions: HPV16 and HPV18 accounted for almost 70% of all the HPV positive ICC cases. The study provides baseline information for further evaluation on the impact of recently introduced HPV vaccines in Italy
Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species
In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis
Genome-Wide Mutagenesis of Xanthomonas axonopodis pv. citri Reveals Novel Genetic Determinants and Regulation Mechanisms of Biofilm Formation
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS) and/or lipopolysaccharide (LPS), 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS), encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic determinants and regulatory mechanism of biofilm formation
Impact of Daily Thermocycles on Hatching Rhythms, Larval Performance and Sex Differentiation of Zebrafish
In the wild, water temperature cycles daily: it warms up after sunrise, and cools rapidly after sunset. Surprisingly, the impact of such daily thermocycles during the early development of fish remains neglected. We investigated the influence of constant vs daily thermocycles in zebrafish, from embryo development to sexual differentiation, by applying four temperature regimens: two constant (24°C and 28°C) and two daily thermocycles: 28:24°C, TC (thermophase coinciding with daytime, and cryophase coinciding with night-time) and 24:28°C, CT (opposite to TC) in a 12:12 h light:dark cycle (LD). Embryo development was temperature-dependent but enhanced at 28°C and TC. Hatching rhythms were diurnal (around 4 h after lights on), but temperature- and cycle-sensitive, since hatching occurred sooner at 28°C (48 hours post fertilization; hpf) while it was delayed at 24°C (96 hpf). Under TC, hatching occurred at 72 hpf, while under CT hatching displayed two peaks (at 70 hpf and 94 hpf). In constant light (LL) or darkness (DD), hatching rhythms persisted with tau close to 24 h, suggesting a clock-controlled "gating" mechanism. Under 28°C or TC, larvae showed the best performance (high growth and survival, and low malformations). The sex ratio was strongly influenced by temperature, as the proportion of females was higher in CT and TC (79 and 83% respectively), contrasting with 28°C and 24°C, which led to more males (83 and 76%). Ovarian aromatase (cyp19a) expression in females was highest in TC and CT (6.5 and 4.6 fold higher than at 28°C, respectively); while anti-müllerian hormone (amh) expression in males increased in testis at 24°C (3.6 fold higher compared to TC) and particularly at 28°C (14.3 fold increase). Taken together, these findings highlight the key role of environmental cycles during early development, which shaped the daily rhythms in fish embryo and larvae, and ultimately influenced sex differentiation
Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii
Background: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientIfico e Tecnologico (CNPq)Coordenacao para Aperfeicoamento de Pessoal de Ensino Superior (CAPES)Fundo de Defesa da Citricultura (FUNDECITRUS
Ras-association domain of sorting nexin 27 is critical for regulating expression of GIRK potassium channels
G protein-gated inwardly rectifying potassium (GIRK) channels play an important role in regulating neuronal excitability. Sorting nexin 27b (SNX27b), which reduces surface expression of GIRK channels through a PDZ domain interaction, contains a putative Ras-association (RA) domain with unknown function. Deleting the RA domain in SNX27b (SNX27b-DRA) prevents the down-regulation of GIRK2c/GIRK3 channels. Similarly, a point mutation (K305A) in the RA domain disrupts regulation of GIRK2c/GIRK3 channels and reduces H-Ras binding in vitro. Finally, the dominant-negative H-Ras (S17N) occludes the SNX27b-dependent decrease in surface expression of GIRK2c/GIRK3 channels. Thus, the presence of a functional RA domain and the interaction with Ras-like G proteins comprise a novel mechanism for modulating SNX27b control of GIRK channel surface expression and cellular excitability
Actin acting at the Golgi
The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafficking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in traf- ficking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers
