617 research outputs found
Pair Interaction Potentials of Colloids by Extrapolation of Confocal Microscopy Measurements of Collective Structure
A method for measuring the pair interaction potential between colloidal
particles by extrapolation measurement of collective structure to infinite
dilution is presented and explored using simulation and experiment. The method
is particularly well suited to systems in which the colloid is fluorescent and
refractive index matched with the solvent. The method involves characterizing
the potential of mean force between colloidal particles in suspension by
measurement of the radial distribution function using 3D direct visualization.
The potentials of mean force are extrapolated to infinite dilution to yield an
estimate of the pair interaction potential, . We use Monte Carlo (MC)
simulation to test and establish our methodology as well as to explore the
effects of polydispersity on the accuracy. We use poly-12-hydroxystearic
acid-stabilized poly(methyl methacrylate) (PHSA-PMMA) particles dispersed in
the solvent dioctyl phthalate (DOP) to test the method and assess its accuracy
for three different repulsive systems for which the range has been manipulated
by addition of electrolyte.Comment: 35 pages, 14 figure
Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.
Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells
Recommended from our members
How local is local? Evidence from bank competition and corporate innovation in U.S.
This paper aims to fill in a research gap in the effects of bank competition on corporate innovation. In addition to the evidence on the favorable effects of bank competition on corporate innovation, we show novel evidence on the substitution effects of bank competition in a wider region and neighbor-state to local bank competition in financing corporate innovation activities. In banking market, we show ‘how local is local’ depends on the operating scope and information transparency of firms. Local banks have an information advantage over distant banks in financing local businesses and informationally opaque corporate innovation activities
Systematic Genetic Nomenclature for Type VII Secretion Systems
CITATION: Bitter, W., et al. 2009. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathogens, 5(10): 1-6, doi: 10.1371/journal.ppat.1000507.The original publication is available at http://journals.plos.org/plospathogensMycobacteria, such as the etiological
agent of human tuberculosis, Mycobacterium
tuberculosis, are protected by an impermeable
cell envelope composed of an inner
cytoplasmic membrane, a peptidoglycan
layer, an arabinogalactan layer, and an
outer membrane. This second membrane
consists of covalently linked, tightly packed
long-chain mycolic acids [1,2] and noncovalently
bound shorter lipids involved in
pathogenicity [3–5]. To ensure protein
transport across this complex cell envelope,
mycobacteria use various secretion pathways,
such as the SecA1-mediated general
secretory pathway [6,7], an alternative
SecA2-operated pathway [8], a twin-arginine
translocation system [9,10], and a
specialized secretion pathway variously
named ESAT-6-, SNM-, ESX-, or type
VII secretion [11–16]. The latter pathway,
hereafter referred to as type VII secretion
(T7S), has recently become a large and
competitive research topic that is closely
linked to studies of host–pathogen interactions
of M. tuberculosis [17] and other
pathogenic mycobacteria [16]. Molecular
details are just beginning to be revealed
[18–22] showing that T7S systems are
complex machineries with multiple components
and multiple substrates. Despite
their biological importance, there has been
a lack of a clear naming policy for the
components and substrates of these systems.
As there are multiple paralogous T7S
systems within the Mycobacteria and
orthologous systems in related bacteria,
we are concerned that, without a unified
nomenclature system, a multitude of redundant
and obscure gene names will be
used that will inevitably lead to confusion
and hinder future progress. In this opinion
piece we will therefore propose and introduce
a systematic nomenclature with
guidelines for name selection of new
components that will greatly facilitate
communication and understanding in this
rapidly developing field of research.http://journals.plos.org/plospathogens/article?id=10.1371%2Fjournal.ppat.1000507Publisher's versio
Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]
Prions are proteins that can access multiple conformations, at least one of which is beta-sheet rich, infectious and self-perpetuating in nature. These infectious proteins show several remarkable biological activities, including the ability to form multiple infectious prion conformations, also known as strains or variants, encoding unique biological phenotypes, and to establish and overcome prion species (transmission) barriers. In this Perspective, we highlight recent studies of the yeast prion [PSI+], using various biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which self-perpetuating prions encipher such biological activities. We also discuss several aspects of prion conformational change and structure that remain either unknown or controversial, and we propose approaches to accelerate the understanding of these enigmatic, infectious conformers
Geomicrobiology of the built environment
Microbial colonization and growth can have significant effects in the built environment, resulting in a range of effects from discolouration and staining to biodeterioration and decay. In some cases, formation of biofilms, crusts and patinas may confer bioprotection of the substrate. This perspective aims to discuss how geomicrobial transformations in the natural environment - particularly involving rocks, minerals, metals and organic matter - may be applied to understand similar processes occurring on fabricated human structures. However, the built environment may offer further strictures as well as benefits for microbial activity and these should be taken into consideration when considering analogy with natural processes, especially when linking observations of microbial biodiversity to the more obvious manifestations of microbial attack
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes
Heterosexual men who patronise entertainment establishments versus brothels in an Asian urban setting – which group practises riskier sexual behaviours?
- …
