278 research outputs found
Optimizing Performance of Continuous-Time Stochastic Systems using Timeout Synthesis
We consider parametric version of fixed-delay continuous-time Markov chains
(or equivalently deterministic and stochastic Petri nets, DSPN) where
fixed-delay transitions are specified by parameters, rather than concrete
values. Our goal is to synthesize values of these parameters that, for a given
cost function, minimise expected total cost incurred before reaching a given
set of target states. We show that under mild assumptions, optimal values of
parameters can be effectively approximated using translation to a Markov
decision process (MDP) whose actions correspond to discretized values of these
parameters
Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events
that can be non-exponentially distributed. Within parametric ACTMCs, the
parameters of alarm-event distributions are not given explicitly and can be
subject of parameter synthesis. An algorithm solving the -optimal
parameter synthesis problem for parametric ACTMCs with long-run average
optimization objectives is presented. Our approach is based on reduction of the
problem to finding long-run average optimal strategies in semi-Markov decision
processes (semi-MDPs) and sufficient discretization of parameter (i.e., action)
space. Since the set of actions in the discretized semi-MDP can be very large,
a straightforward approach based on explicit action-space construction fails to
solve even simple instances of the problem. The presented algorithm uses an
enhanced policy iteration on symbolic representations of the action space. The
soundness of the algorithm is established for parametric ACTMCs with
alarm-event distributions satisfying four mild assumptions that are shown to
hold for uniform, Dirac and Weibull distributions in particular, but are
satisfied for many other distributions as well. An experimental implementation
shows that the symbolic technique substantially improves the efficiency of the
synthesis algorithm and allows to solve instances of realistic size.Comment: This article is a full version of a paper accepted to the Conference
on Quantitative Evaluation of SysTems (QEST) 201
A search for the decay modes B+/- to h+/- tau l
We present a search for the lepton flavor violating decay modes B+/- to h+/-
tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472
million BBbar pairs. The search uses events where one B meson is fully
reconstructed in one of several hadronic final states. Using the momenta of the
reconstructed B, h, and l candidates, we are able to fully determine the tau
four-momentum. The resulting tau candidate mass is our main discriminant
against combinatorial background. We see no evidence for B+/- to h+/- tau l
decays and set a 90% confidence level upper limit on each branching fraction at
the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
Evidence for an excess of B -> D(*) Tau Nu decays
Based on the full BaBar data sample, we report improved measurements of the
ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or
mu. These ratios are sensitive to new physics contributions in the form of a
charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) =
0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0
sigma and 2.7 sigma, respectively. Taken together, our results disagree with
these expectations at the 3.4 sigma level. This excess cannot be explained by a
charged Higgs boson in the type II two-Higgs-doublet model. We also report the
observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the
format of Figure 2 and included the effect of the change of the Tau
polarization due to the charged Higg
Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar
We study the process with
initial-state-radiation events produced at the PEP-II asymmetric-energy
collider. The data were recorded with the BaBar detector at center-of-mass
energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454
. We investigate the mass
distribution in the region from 3.5 to 5.5 . Below 3.7
the signal dominates, and above 4
there is a significant peak due to the Y(4260). A fit to
the data in the range 3.74 -- 5.50 yields a mass value
(stat) (syst) and a width value (stat)(syst) for this state. We do not
confirm the report from the Belle collaboration of a broad structure at 4.01
. In addition, we investigate the system
which results from Y(4260) decay
Anomalous diffusion and asymmetric tempering memory in neutrophil chemotaxis.
The motility of neutrophils and their ability to sense and to react to chemoattractants in their environment are of central importance for the innate immunity. Neutrophils are guided towards sites of inflammation following the activation of G-protein coupled chemoattractant receptors such as CXCR2 whose signaling strongly depends on the activity of Ca2+ permeable TRPC6 channels. It is the aim of this study to analyze data sets obtained in vitro (murine neutrophils) and in vivo (zebrafish neutrophils) with a stochastic mathematical model to gain deeper insight into the underlying mechanisms. The model is based on the analysis of trajectories of individual neutrophils. Bayesian data analysis, including the covariances of positions for fractional Brownian motion as well as for exponentially and power-law tempered model variants, allows the estimation of parameters and model selection. Our model-based analysis reveals that wildtype neutrophils show pure superdiffusive fractional Brownian motion. This so-called anomalous dynamics is characterized by temporal long-range correlations for the movement into the direction of the chemotactic CXCL1 gradient. Pure superdiffusion is absent vertically to this gradient. This points to an asymmetric 'memory' of the migratory machinery, which is found both in vitro and in vivo. CXCR2 blockade and TRPC6-knockout cause tempering of temporal correlations in the chemotactic gradient. This can be interpreted as a progressive loss of memory, which leads to a marked reduction of chemotaxis and search efficiency of neutrophils. In summary, our findings indicate that spatially differential regulation of anomalous dynamics appears to play a central role in guiding efficient chemotactic behavior
Correlation of Fc Receptor Polymorphisms with Pneumococcal Antibodies in Vaccinated Kidney Transplant Recipients
Several polymorphisms within Fc receptors (FCR) have been described, some of which correlate with allograft function. In the current study, we determined three Fcγ receptor and five Fcα receptor dimorphisms in 47 kidney transplant recipients who had been vaccinated against Streptococcus pneumoniae. We analyzed if FCR genotypes correlated with pneumococcal antibodies and their serotype-specific opsonophagocytic function, tested prior to and at months 1 and 12 post-vaccination. In parallel, we assessed antibodies against HLA and MICA and determined kidney function. We observed that IgG2 antibodies against pneumococci at months 1 and 12 after vaccination and IgA antibodies at month 1 differed significantly between the carriers of the three genotypes of FCGR3A rs396991 (V158F, p = 0.02; 0.04 and 0.009, respectively). Moreover, the genotype of FCGR3A correlated with serotype-specific opsonophagocytic function, reaching statistical significance (p < 0.05) at month 1 for 9/13 serotypes and at month 12 for 6/13 serotypes. Heterozygotes for FCGR3A had the lowest antibody response after pneumococcal vaccination. On the contrary, heterozygotes tended to have more antibodies against HLA class I and impaired kidney function. Taken together, our current data indicate that heterozygosity for FCGR3A may be unfavorable in kidney transplant recipients
Search for the decay modes D^0 → e^+e^-, D^0 → μ^+μ^-, and D^0 → e^±μ∓
We present searches for the rare decay modes D^0→e^+e^-, D^0→μ^+μ^-, and D^0→e^±μ^∓ in continuum e^+e^-→cc events recorded by the BABAR detector in a data sample that corresponds to an integrated luminosity of 468 fb^(-1). These decays are highly Glashow–Iliopoulos–Maiani suppressed but may be enhanced in several extensions of the standard model. Our observed event yields are consistent with the expected backgrounds. An excess is seen in the D^0→μ^+μ^- channel, although the observed yield is consistent with an upward background fluctuation at the 5% level. Using the Feldman–Cousins method, we set the following 90% confidence level intervals on the branching fractions: B(D^0→e^+e^-)<1.7×10^(-7), B(D^0→μ^+μ^-) within [0.6,8.1]×10^(-7), and B(D^0→e^±μ^∓)<3.3×10^(-7)
Observation and applications of single-electron charge signals in the XENON100 experiment
The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experiment: the secondary-scintillation gain, the extraction yield from the liquid to the gas phase and the electron drift velocity
- …
