4,986 research outputs found
Characterization of damage in shielding structures of space vehicles under hypervelocity impact
6th Asia Pacific Workshop on Structural Health Monitoring, APWSHM, Hobart, Tasmania, Australia, 7-9 December 2016Version of RecordPublishe
A qualitative analysis of offenders' modus operandi in sexually exploitative interactions with children online
Transcripts of chat logs of naturally-occurring, sexually exploitative interactions between offenders and victims that took place via Internet communication platforms were analyzed. The aim of the study was to examine the modus operandi of offenders in such interactions, with particular focus on the specific strategies they use to engage victims, including discursive tactics. We also aimed to ascertain offenders’ underlying motivation and function of engagement in online interactions with children. Five cases, comprising 29 transcripts, were analyzed using qualitative thematic analysis with a discursive focus. In addition to this, police reports were reviewed for descriptive and case-specific information. Offenders were men aged between 27 and 52 years (M = 33.6, SD = 5.6), and the number of children they communicated with ranged from one to twelve (M = 4.6, SD = 4.5). Victims were aged between 11 and 15 (M = 13.00, SD = 1.2), and were both female and male. Three offenders committed online sexual offenses, and two offenders committed contact sexual offenses in addition to online sexual offenses. The analysis of transcripts revealed that interactions between offenders and victims were of a highly sexual nature, and that offenders employed a range of manipulative strategies to engage victims and achieve their compliance. It appeared that offenders engaged in such interactions for the purpose of sexual arousal and gratification, as well as fantasy fulfillment
The Early Bird Catches The Term: Combining Twitter and News Data For Event Detection and Situational Awareness
Twitter updates now represent an enormous stream of information originating
from a wide variety of formal and informal sources, much of which is relevant
to real-world events. In this paper we adapt existing bio-surveillance
algorithms to detect localised spikes in Twitter activity corresponding to real
events with a high level of confidence. We then develop a methodology to
automatically summarise these events, both by providing the tweets which fully
describe the event and by linking to highly relevant news articles. We apply
our methods to outbreaks of illness and events strongly affecting sentiment. In
both case studies we are able to detect events verifiable by third party
sources and produce high quality summaries
Characterizing hypervelocity impact (HVI)-induced pitting damage using active guided ultrasonic waves : from linear to nonlinear
2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe
On the stability of high-speed milling with spindle speed variation
Spindle speed variation is a well-known technique to suppress regenerative machine tool vibrations, but it is usually considered to be effective only for low spindle speeds. In this paper, the effect of spindle speed variation is analyzed in the high-speed domain for spindle speeds corresponding to the first flip (period doubling) and to the first Hopf lobes. The optimal amplitudes and frequencies of the speed modulations are computed using the semidiscre- tization method. It is shown that period doubling chatter can effectively be suppressed by spindle speed variation, although, the technique is not effective for the quasiperiodic chatter above the Hopf lobe. The results are verified by cutting tests. Some special cases are also discussed where the practical behavior of the system differs from the predicted one in some ways. For these cases, it is pointed out that the concept of stability is understood on the scale of the principal period of the system—that is, the speed modulation period for variable spindle speed machining and the tooth passing period for constant spindle speed machining
Thermal stress induces glycolytic beige fat formation via a myogenic state.
Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival
\u201cGive, but Give until It Hurts\u201d: The Modulatory Role of Trait Emotional Intelligence on the Motivation to Help
Two studies investigated the effect of trait Emotional Intelligence (trait EI) on people\u2019s moti- vation to help. In Study 1, we developed a new computer-based paradigm that tested partic- ipants\u2019 motivation to help by measuring their performance on a task in which they could gain a hypothetical amount of money to help children in need. Crucially, we manipulated partici- pants\u2019 perceived efficacy by informing them that they had been either able to save the chil- dren (positive feedback) or unable to save the children (negative feedback). We measured trait EI using the Trait Emotional Intelligence Questionnaire\u2013Short Form (TEIQue-SF) and assessed participants\u2019 affective reactions during the experiment using the PANAS-X. Results showed that high and low trait EI participants performed differently after the presen- tation of feedback on their ineffectiveness in helping others in need. Both groups showed increasing negative affective states during the experiment when the feedback was negative; however, high trait EI participants better managed their affective reactions, modulating the impact of their emotions on performance and maintaining a high level of motivation to help. In Study 2, we used a similar computerized task and tested a control situation to explore the effect of trait EI on participants\u2019 behavior when facing failure or success in a scenario unre- lated to helping others in need. No effect of feedback emerged on participants\u2019 emotional states in the second study. Taken together our results show that trait EI influences the impact of success and failure on behavior only in affect-rich situation like those in which people are asked to help others in need
Tuning of Human Modulation Filters Is Carrier-Frequency Dependent
Licensed under the Creative Commons Attribution License
Superconductivity in HfTe5 across weak to strong topological insulator transition induced via pressures
Recently, theoretical studies show that layered HfTe5 is at the boundary of weak & strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic & crystal structures for HfTe5 with a culmination of pressure induced superconductivity. Our experiments indicated that the temperature for anomaly resistance peak (Tp) due to Lifshitz transition decreases first before climbs up to a maximum with pressure while the Tp minimum corresponds to the transition from a weak TI to strong TI. The HfTe5 crystal becomes superconductive above ~5.5 GPa where the Tp reaches maximum. The highest superconducting transition temperature (Tc) around 5 K was achieved at 20 GPa. Crystal structure studies indicate that HfTe5 transforms from a Cmcm phase across a monoclinic C2/m phase then to a P-1 phase with increasing pressure. Based on transport, structure studies a comprehensive phase diagram of HfTe5 is constructed as function of pressure. The work provides valuable experimental insights into the evolution on how to proceed from a weak TI precursor across a strong TI to superconductors
Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors
- …
