320 research outputs found

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Threatened reef corals of the world

    Get PDF
    10.1371/journal.pone.0034459PLoS ONE73

    Genetic polymorphisms associated with the inflammatory response in bacterial meningitis

    Get PDF
    BACKGROUND Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. METHODS The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. RESULTS We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. CONCLUSIONS In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches

    Difficulties when Assessing Birdsong Learning Programmes under Field Conditions: A Re-Evaluation of Song Repertoire Flexibility in the Great Tit

    Get PDF
    There is a remarkable diversity of song-learning strategies in songbirds. Establishing whether a species is closed- or open-ended is important to be able to interpret functional and evolutionary consequences of variation in repertoire size. Most of our knowledge regarding the timing of vocal learning is based on laboratory studies, despite the fact that these may not always replicate the complex ecological and social interactions experienced by birds in the wild. Given that field studies cannot provide the experimental control of laboratory studies, it may not be surprising that species such as the great tit that were initially assumed to be closed-ended learners have later been suggested to be open-ended learners. By using an established colour-ringed population, by following a standardized recording protocol, and by taking into account the species' song ecology (using only recordings obtained during peak of singing at dawn), we replicated two previous studies to assess song repertoire learning and flexibility in adult wild great tits elicited by social interactions. First, we performed a playback experiment to test repertoire plasticity elicited by novel versus own songs. Additionally, in a longitudinal study, we followed 30 males in two consecutive years and analysed whether new neighbours influenced any change in the repertoire. Contrary to the previous studies, song repertoire size and composition were found to be highly repeatable both between years and after confrontation with a novel song. Our results suggest that great tits are closed-ended learners and that their song repertoire probably does not change during adulthood. Methodological differences that may have led to an underestimation of the repertoires or population differences may explain the discrepancy in results with previous studies. We argue that a rigorous and standardized assessment of the repertoire is essential when studying age- or playback-induced changes in repertoire size and composition under field conditions

    Pastoral Herding Strategies and Governmental Management Objectives: Predation Compensation as a Risk Buffering Strategy in the Saami Reindeer Husbandry

    Get PDF
    Previously it has been found that an important risk buffering strategy in the Saami reindeer husbandry in Norway is the accumulation of large herds of reindeer as this increases long-term household viability. Nevertheless, few studies have investigated how official policies, such as economic compensation for livestock losses, can influence pastoral strategies. This study investigated the effect of received predation compensation on individual husbandry units’ future herd size. The main finding in this study is that predation compensation had a positive effect on husbandry units’ future herd size. The effect of predation compensation, however, was nonlinear in some years, indicating that predation compensation had a positive effect on future herd size only up to a certain threshold whereby adding additional predation compensation had little effect on future herd size. More importantly, the effect of predation compensation was positive after controlling for reindeer density, indicating that for a given reindeer density husbandry units receiving more predation compensation performed better (measured as the size of future herds) compared to husbandry units receiving less compensation

    A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.)

    Get PDF
    Late leaf spot (LLS) and rust are two major foliar diseases of groundnut (Arachis hypogaea L.) that often occur together leading to 50–70% yield loss in the crop. A total of 268 recombinant inbred lines of a mapping population TAG 24 × GPBD 4 segregating for LLS and rust were used to undertake quantitative trait locus (QTL) analysis. Phenotyping of the population was carried out under artificial disease epiphytotics. Positive correlations between different stages, high to very high heritability and independent nature of inheritance between both the diseases were observed. Parental genotypes were screened with 1,089 simple sequence repeat (SSR) markers, of which 67 (6.15%) were found polymorphic. Segregation data obtained for these markers facilitated development of partial linkage map (14 linkage groups) with 56 SSR loci. Composite interval mapping (CIM) undertaken on genotyping and phenotyping data yielded 11 QTLs for LLS (explaining 1.70–6.50% phenotypic variation) in three environments and 12 QTLs for rust (explaining 1.70–55.20% phenotypic variation). Interestingly a major QTL associated with rust (QTLrust01), contributing 6.90–55.20% variation, was identified by both CIM and single marker analysis (SMA). A candidate SSR marker (IPAHM 103) linked with this QTL was validated using a wide range of resistant/susceptible breeding lines as well as progeny lines of another mapping population (TG 26 × GPBD 4). Therefore, this marker should be useful for introgressing the major QTL for rust in desired lines/varieties of groundnut through marker-assisted backcrossing
    corecore