115 research outputs found
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
The Dijet Mass Spectrum and a Search for Quark Compositeness in bar{p}p Collisions at sqrt{s} = 1.8 TeV
Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we
have measured the inclusive dijet mass spectrum in the central pseudorapidity
region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also
measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| <
1.0). The order alpha_s^3 QCD predictions are in good agreement with the data
and we rule out models of quark compositeness with a contact interaction scale
< 2.4 TeV at the 95% confidence level.Comment: 11 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let
Zgamma Production in pbarp Collisions at sqrt(s)=1.8 TeV and Limits on Anomalous ZZgamma and Zgammagamma Couplings
We present a study of Z +gamma + X production in p-bar p collisions at
sqrt{S}=1.8 TeV from 97 (87) pb^{-1} of data collected in the eegamma
(mumugamma) decay channel with the D0 detector at Fermilab. The event yield and
kinematic characteristics are consistent with the Standard Model predictions.
We obtain limits on anomalous ZZgamma and Zgammagamma couplings for form factor
scales Lambda = 500 GeV and Lambda = 750 GeV. Combining this analysis with our
previous results yields 95% CL limits |h{Z}_{30}| < 0.36, |h{Z}_{40}| < 0.05,
|h{gamma}_{30}| < 0.37, and |h{gamma}_{40}| < 0.05 for a form factor scale
Lambda=750 GeV.Comment: 17 Pages including 2 Figures. Submitted to PR
A Measurement of the W Boson Mass
We report a measurement of the W boson mass based on an integrated luminosity
of 82 pb from \ppbar collisions at TeV recorded in
1994--1995 by the \Dzero detector at the Fermilab Tevatron. We identify W
bosons by their decays to and extract the mass by fitting the transverse
mass spectrum from 28,323 W boson candidates. A sample of 3,563 dielectron
events, mostly due to Z to ee decays, constrains models of W boson production
and the detector. We measure \mw=80.44\pm0.10(stat)\pm0.07(syst)~GeV. By
combining this measurement with our result from the 1992--1993 data set, we
obtain \mw=80.43\pm0.11 GeV.Comment: 11 pages, 5 figure
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Measurement of the W boson mass using electrons at large rapidities
We report a measurement of the W boson mass based on an integrated luminosity of 82/pb from p-pbar collisions at sqrt(s) = 1.8 TeV recorded in 1994-1995 by the D0 detector at the Fermilab Tevatron. We identify W bosons by their decays to e-nu, where the electron is detected in the forward calorimeters. We extract the mass by fitting the transverse mass and the electron and neutrino transverse momentum spectra of 11,089 W boson candidates. We measure Mw = 80.691 +- 0.227 GeV. By combining this measurement with our previously published central calorimeter results from data taken in 1992-1993 and 1994-1995, we obtain Mw = 80.482 +- 0.091 GeV
Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay
Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
The high comorbidity burden of the hepatitis C virus infected population in the United States
<p>Abstract</p> <p>Background</p> <p>Chronic hepatitis C (HCV) disease can be complicated with comorbid conditions that may impact treatment eligibility and outcomes. The aim of the study was to systematically review comorbidities and symptoms in an HCV infected population, specifically assessing comorbidities associated with HCV anti-viral treatment and disease, as well as comparing comorbidities between an HCV infected and uninfected control population.</p> <p>Methods</p> <p>This was a retrospective cohort study within a United States medical claims database among patients with chronic HCV designed to estimate the two-year period prevalence of comorbidities. Patients with two HCV diagnosis codes, 24 months of continuous health insurance coverage, and full medical and pharmacy benefits were included.</p> <p>Results</p> <p>Among a chronic HCV cohort of 7411 patients, at least one comorbid condition was seen in almost all patients (> 99%) during the study period. HCV-infected patients reported almost double the number of comorbidities compared to uninfected controls. Of the 25 most common comorbidities, the majority of the comorbidities (n = 22) were known to be associated with either HCV antiviral treatment or disease. The five most frequent comorbidities were liver disease [other] (37.5%), connective tissue disease (37.5%), abdominal pain (36.1%), upper respiratory infections (35.6%), and lower respiratory disease (33.7%). Three notable comorbidities not known to be associated with antiviral treatment or disease were benign neoplasms (24.3%), genitourinary symptoms & ill-defined conditions (14.8%), and viral infections (13.8%).</p> <p>Conclusions</p> <p>This US medically insured HCV population is highly comorbid. Effective strategies to manage these comorbidities are necessary to allow wider access to HCV treatment and reduce the future burden of HCV disease and its manifestations.</p
- …
