28 research outputs found

    Thymosin Beta 4 Prevents Oxidative Stress by Targeting Antioxidant and Anti-Apoptotic Genes in Cardiac Fibroblasts

    Get PDF
    Thymosin beta-4 (Tβ4) is a ubiquitous protein with diverse functions relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory responses. The effecter molecules targeted by Tβ4 for cardiac protection remains unknown. The purpose of this study is to determine the molecules targeted by Tβ4 that mediate cardio-protection under oxidative stress.Rat neonatal fibroblasts cells were exposed to hydrogen peroxide (H(2)O(2)) in presence and absence of Tβ4 and expression of antioxidant, apoptotic and pro-fibrotic genes was evaluated by quantitative real-time PCR and western blotting. Reactive oxygen species (ROS) levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant and antiapoptotic genes were silenced by siRNA transfections in cardiac fibroblasts and the effect of Tβ4 on H(2)O(2)-induced profibrotic events was evaluated.Pre-treatment with Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2)O(2) in the cardiac fibroblasts. This was associated with an increased expression of antioxidant enzymes Cu/Zn superoxide dismutase (SOD) and catalase and reduction of Bax/Bcl(2) ratio. Tβ4 treatment reduced the expression of pro-fibrotic genes [connective tissue growth factor (CTGF), collagen type-1 (Col-I) and collagen type-3 (Col-III)] in the cardiac fibroblasts. Silencing of Cu/Zn-SOD and catalase gene triggered apoptotic cell death in the cardiac fibroblasts, which was prevented by treatment with Tβ4.This is the first report that exhibits the targeted molecules modulated by Tβ4 under oxidative stress utilizing the cardiac fibroblasts. Tβ4 treatment prevented the profibrotic gene expression in the in vitro settings. Our findings indicate that Tβ4 selectively targets and upregulates catalase, Cu/Zn-SOD and Bcl(2), thereby, preventing H(2)O(2)-induced profibrotic changes in the myocardium. Further studies are warranted to elucidate the signaling pathways involved in the cardio-protection afforded by Tβ4

    Use of rapid diagnostic techniques in ICU patients with infections

    Get PDF

    Comparison of lung tissue concentrations of nebulized ceftazidime in ventilated piglets: ultrasonic versus vibrating plate nebulizers

    No full text
    Objective: To compare the efficiency of an Aeroneb Pro vibrating plate and an Atomisor MegaHertz ultrasonic nebulizer for providing ceftazidime distal lung deposition.Design: In vitro experiments. One gram of cetazidime was nebulized in respiratory circuits and mass median aerodynamic diameter of particles generated by ultrasonic and vibrating plate nebulizers was compared using a laser velocimeter. In vivo experiments. Lung tissue concentrations and extrapulmonary depositions were measured in ten anesthetized ventilated piglets with healthy lungs that received 1 g of ceftazidime by nebulization with either an ultrasonic (n = 5), or a vibrating plate (n = 5) nebulizer.Setting: A two-bed Experimental Intensive Care Unit of a University School of Medicine.Intervention: Following sacrifice, 5 subpleural specimens were sampled in dependent and nondependent lung regions for measuring ceftazidime lung tissue concentrations by high-performance liquid chromatography.Measurements and results: Mass median aerodynamic diameters generated by both nebulizers were similar with more than 95% of the particles between 0.5 and 5 mu m. Lung tissue concentrations were 553 +/- 123 [95% confidence interval: 514-638] mu g g(-1) using ultrasonic nebulizer, and 452 +/- 172 [95% confidence interval: 376-528] mu g g(-1) using vibrating plate nebulizers (NS). Extrapulmonary depositions were, respectively, of 38 +/- 5% (ultrasonic) and 34 +/- 4% (vibrating plate) (NS).Conclusions: Vibrating plate nebulizer is comparable to ultrasonic nebulizers for ceftazidime nebulization. It may represent a new attractive technology for inhaled antibiotic therapy

    COPD in HIV-Infected Patients: CD4 Cell Count Highly Correlated

    No full text
    BACKGROUND:COPD is a frequent and significant cause of respiratory morbidity in HIV-infected patients despite the control of HIV. We aimed to analyze the factors correlated with COPD in this population to evaluate the existence of specific indicators of vulnerability in this population. METHODS AND FINDINGS:623 HIV-infected outpatients were enrolled during one year. This population was characterised by a dedicated questionnaire and electronic patient records. COPD screening was performed according to recommended spirometric criteria. The prevalence of COPD was 9.0%. Age and smoking were independently correlated with COPD (OR, 1.61 per 10 years increase, P = 0.007; OR, 1.28 per 10 pack-year increase, P = 0.003, respectively). Body mass index (BMI) and CD4 cell-count were independently and negatively correlated with COPD (OR, 0.78, P < 0.001; 0R, 0.77 per 100 cell/mm3 increase, P < 0.001, respectively). Among COPD patients, 77% did not know their diagnosis. Five COPD-patients never smoked and 44.2% did not have any respiratory symptoms and so were not eligible to perform a spirometry according to the guidelines. CONCLUSIONS:In addition to known risk factors, immune defect through CD4 cell count was independently and strongly correlated with COPD. COPD is largely underdiagnosed and thus unmanaged. However, early management and urgent smoking cessation are essential to improve prognosis. Clinicians' awareness on the particular vulnerability for COPD in HIV-infected patients is crucial. Moreover, indications to perform conventional spirometry to diagnose COPD may include more parameters than tobacco-smoking and respiratory complaints with a particular concern toward patients with a profound CD4 cell count defect
    corecore