84 research outputs found
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar
We study the process with
initial-state-radiation events produced at the PEP-II asymmetric-energy
collider. The data were recorded with the BaBar detector at center-of-mass
energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454
. We investigate the mass
distribution in the region from 3.5 to 5.5 . Below 3.7
the signal dominates, and above 4
there is a significant peak due to the Y(4260). A fit to
the data in the range 3.74 -- 5.50 yields a mass value
(stat) (syst) and a width value (stat)(syst) for this state. We do not
confirm the report from the Belle collaboration of a broad structure at 4.01
. In addition, we investigate the system
which results from Y(4260) decay
The role of regulated clinical trials in the development of bacteriophage therapeutics.
Antibiotic resistance is now recognized as a major, global threat to human health and the need for the development of novel antibacterial therapies has become urgent. Lytic bacteriophages (phages) targeting individual bacterial pathogens have therapeutic potential as an alternative or adjunct to antibiotic use. Bacteriophage therapy has been used for decades, but clinical trials in this field are rare, leaving many questions unanswered as to its effectiveness for many infectious diseases. As a consequence bacteriophage therapy is not used or accepted in most parts of the world. The increasing need for new antimicrobial therapies is driving the development of bacteriophage therapies for a number of diseases but these require the successful completion of large-scale clinical trials in accordance with US FDA or European EMA guidelines. Bacteriophages are considered as biological agents by regulatory authorities and they are managed by biological medicinal products guidelines for European trials and guidelines of the division of vaccines and related product applications in the USA. Bacteriophage therapy is typically an 'active' treatment requiring multiplication in the bacterial host and therefore the factors that govern its success are different from those of conventional antibiotics. From the pharmacokinetic and pharmacodynamic points of view, time of treatment, dosage depending on the site of infection and the composition of the bacteriophage formulation (single vs multiple strains) need careful consideration when designing clinical trials. Scientific evidence regarding inflammatory effects, potential for gene transfer and phage resistance, need to be evaluated through such trials. However purity, stability and sterility of preparations for human use can be addressed through Good Manufacturing Practises to reduce many potential safety concerns. In this review we discuss the potential for the development of bacteriophage therapy in the context of critical aspects of modern, regulated clinical trials
Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.
Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form
Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism
Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts
A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279
It is widely accepted that strong and variable radiation detected over all
accessible energy bands in a number of active galaxies arises from a
relativistic, Doppler-boosted jet pointing close to our line of sight. The size
of the emitting zone and the location of this region relative to the central
supermassive black hole are, however, poorly known, with estimates ranging from
light-hours to a light-year or more. Here we report the coincidence of a
gamma-ray flare with a dramatic change of optical polarization angle. This
provides evidence for co-spatiality of optical and gamma-ray emission regions
and indicates a highly ordered jet magnetic field. The results also require a
non-axisymmetric structure of the emission zone, implying a curved trajectory
for the emitting material within the jet, with the dissipation region located
at a considerable distance from the black hole, at about 10^5 gravitational
radii.Comment: Published in Nature issued on 18 February 2010. Corresponding
authors: Masaaki Hayashida and Greg Madejsk
Metabolic Variation during Development in Culture of Leishmania donovani Promastigotes
The genome sequencing of several Leishmania species has provided immense amounts of data and allowed the prediction of the metabolic pathways potentially operating. Subsequent genetic and proteomic studies have identified stage-specific proteins and putative virulence factors but many aspects of the metabolic adaptations of Leishmania remain to be elucidated. In this study, we have used an untargeted metabolomics approach to analyze changes in the metabolite profile as promastigotes of L. donovani develop during in vitro cultures from logarithmic to stationary phase. The results show that the metabolomes of promastigotes on days 3–6 of culture differ significantly from each other, consistent with there being distinct developmental changes. Most notable were the structural changes in glycerophospholipids and increase in the abundance of sphingolipids and glycerolipids as cells progress from logarithmic to stationary phase
Trunk muscle co-activation using functional electrical stimulation modifies center of pressure fluctuations during quiet sitting by increasing trunk stiffness
Are you PEPped and PrEPped for travel? Risk mitigation of HIV infection for travelers
The HIV pandemic persists globally and travelers are at risk for infection by the Human Immunodeficiency Virus (HIV). While HIV-focused guidelines delineate risk stratification and mitigation strategies for people in their home communities, travel issues are not addressed. In this review, direct and indirect evidence on HIV risk among travelers is explored. The burgeoning practice of employing pre-exposure prophylaxis (PrEP) with anti-retroviral therapy in the non-travel setting is introduced, as well as the more established use of post-exposure prophylaxis (PEP). Challenges in applying these lessons to travelers are discussed, and a new guidelines process is scoped and recommended
- …
