1,466 research outputs found
An evaluation of iron bioavailability and speciation in western lake superior with the use of combined physical, chemical, and biological assessment
An iron-dependent cyanobacterial bioreporter (Synechococcus strain KAS101) was used in unison with sizefractionated iron content (.0.45, ,0.45, ,0.02 mm), and chemical characterization of iron complexation (C18 resin column) to elucidate the bioavailable forms of iron present in Lake Superior during periods of inverse thermal stratification (May) and strong thermal stratification (September) of the water column. The results provide evidence of organic complexation of iron in Lake Superior waters. Iron in most sampled water was complexed by organic compounds that behaved like fulvic acids, whereas some samples showed evidence for the presence of siderophore-like compounds. The presence of dissolved organic matter suppressed the cellular luminescence of the bioreporter, indicating an increased iron bioavailability. This effect could result either from the presence of siderophores forming iron complexes that are bioavailable to the bioreporter, or from more indirect effects because of the presence of other organic compounds, such as fulvic acids or polysaccharides. Model ligand additions, iron bioaccumulation, and photo-oxidation of dissolved organic matter were used to assess the bioavailability of organically complexed iron to the bioreporter. A significant fraction of the iron (40- 100%) was bioavailable to the bioreporter. Iron bioavailability was high enough for the bioreporter not to be iron limited in the water collected from Lake Superior. This measure of bioavailability to picocyanobacteria is relevant because picoplankton accounted for the majority of chlorophyll a in Lake Superior during this study. 2009, by the American Society of Limnology and Oceanography, Inc
Evolving DNA motifs to predict GeneChip probe performance
Background: Affymetrix High Density Oligonuclotide Arrays (HDONA) simultaneously measure expression of thousands of genes using millions of probes. We use correlations between measurements for the same gene across 6685 human tissue samples from NCBI's GEO database to indicated the quality of individual HG-U133A probes. Low correlation indicates a poor probe. Results: Regular expressions can be automatically created from a Backus-Naur form (BNF) context-free grammar using strongly typed genetic programming. Conclusion: The automatically produced motif is better at predicting poor DNA sequences than an existing human generated RE, suggesting runs of Cytosine and Guanine and mixtures should all be avoided. © 2009 Langdon and Harrison; licensee BioMed Central Ltd
Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)
Bovine TB is a major problem for the agricultural industry in several
countries. TB can be contracted and spread by species other than cattle and
this can cause a problem for disease control. In the UK and Ireland, badgers
are a recognised reservoir of infection and there has been substantial
discussion about potential control strategies. We present a coupling of
individual based models of bovine TB in badgers and cattle, which aims to
capture the key details of the natural history of the disease and of both
species at approximately county scale. The model is spatially explicit it
follows a very large number of cattle and badgers on a different grid size for
each species and includes also winter housing. We show that the model can
replicate the reported dynamics of both cattle and badger populations as well
as the increasing prevalence of the disease in cattle. Parameter space used as
input in simulations was swept out using Latin hypercube sampling and
sensitivity analysis to model outputs was conducted using mixed effect models.
By exploring a large and computationally intensive parameter space we show that
of the available control strategies it is the frequency of TB testing and
whether or not winter housing is practised that have the most significant
effects on the number of infected cattle, with the effect of winter housing
becoming stronger as farm size increases. Whether badgers were culled or not
explained about 5%, while the accuracy of the test employed to detect infected
cattle explained less than 3% of the variance in the number of infected cattle
Employer's management of employees affected by cancer
Return to work (RTW) following treatment can be problematic for cancer survivors. Although some people affected by cancer are able to continue working, a greater proportion of these survivors end up unemployed, retire early or change jobs than those without a diagnosis of cancer. One of the reasons for not returning to work is the lack of understanding and support from employers and supervisors. Currently, it is not clear what factors are likely to influence the employer’s management of employees recovering from cancer. This article reports the outcome from a review of the published literature on factors related to the current employer management of employed cancer survivors
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements
International audienceVoluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task features. We found that the temporal and spatial aspects of the movements were encoded by different temporal and spatial muscle synergies, respectively, consistent with the intuition that there should a correspondence between major attributes of movement and major features of synergies. This approach led to the development of a novel computational method for comparing muscle synergies from different participants according to their functional role. This functional similarity analysis yielded a small set of temporal and spatial synergies that describes the main features of whole-body reaching movements
Emergence and Evolution of Cooperation Under Resource Pressure
We study the influence that resource availability has on cooperation in the context of hunter-gatherer
societies. This paper proposes a model based on archaeological and ethnographic research on resource
stress episodes, which exposes three different cooperative regimes according to the relationship
between resource availability in the environment and population size. The most interesting regime
represents moderate survival stress in which individuals coordinate in an evolutionary way to increase
the probabilities of survival and reduce the risk of failing to meet the minimum needs for survival.
Populations self-organise in an indirect reciprocity system in which the norm that emerges is to share
the part of the resource that is not strictly necessary for survival, thereby collectively lowering the
chances of starving. Our findings shed further light on the emergence and evolution of cooperation in
hunter-gatherer societies.Spanish Ministry of Science and Innovation Project CSD2010-00034
(SimulPast CONSOLIDER-INGENIO 2010) and HAR2009-06996; from the Argentine National Scientific
and Technical Research Council (CONICET): Project PIP-0706; from the Wenner-Gren Foundation for
Anthropological Research: Project GR7846; and from the project H2020 FET OPEN RIA IBSEN/66272
Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties.
Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg block. In addition, we provide new views on Mg and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B unusually allowed Mg permeation, whereas nearby N615I reduced Ca permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations
Fish passage design for sustainable hydropower in the temperate Southern Hemisphere:An evidence review
Landscape structure, human disturbance and crop management affect foraging ground selection by migrating geese
It is well known that agricultural intensification has caused severe population declines among bird species which use farmland for breeding and overwintering, while migrating bird species may benefit from intensive farming, but in turn damage crops. Knowledge of the habitat selection of migrating birds is important from both a conservation and agro-economic point of view. We investigated the habitat preferences of three common migrating goose species: White-fronted Goose Anser albifrons, Bean Goose A. fabalis and Greylag Goose A. anser during the autumn of 2009 in western Poland. A total of 24 flocks of these species were identified. Geese preferred large, elevated fields that were remote from forests and human settlements but in close proximity to a lake. Geese selected maize stubbles and avoided winter cereals. They selected sites in landscapes with a lower diversity of crops. Flock size was negatively correlated with the proportion of pastures in the landscape, but it increased with field size, distance to forest and distance to town. Our results are in contrast with the paradigm that less intensive farmland positively influences habitat use by birds during foraging. We advise the delayed ploughing of stubbles with the aim of creating appropriate foraging habitats for geese and minimizing damage to cereal crops
- …
