61 research outputs found
Photoperiod Regulates Lean Mass Accretion, but Not Adiposity, in Growing F344 Rats Fed a High Fat Diet
yesIn this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHβ or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function.Scottish Government (Rural and Environment Science and Analytical Services Division, http://www.scotland.gov.uk/), AWR LR LMT PJM and the BBSRC, (http://www.bbsrc.ac.uk/home/home.aspx, grant BB/K001043/1), AWR GH PJ
Decolonisation of MRSA, S. aureus and E. coli by Cold-Atmospheric Plasma Using a Porcine Skin Model In Vitro
In the last twenty years new antibacterial agents approved by the U.S. FDA decreased whereas in parallel the resistance situation of multi-resistant bacteria increased. Thus, community and nosocomial acquired infections of resistant bacteria led to a decrease in the efficacy of standard therapy, prolonging treatment time and increasing healthcare costs. Therefore, the aim of this work was to demonstrate the applicability of cold atmospheric plasma for decolonisation of Gram-positive (Methicillin-resistant Staphylococcus aureus (MRSA), Methicillin-sensitive Staphylococcus aureus) and Gram-negative bacteria (E. coli) using an ex vivo pig skin model. Freshly excised skin samples were taken from six month old female pigs (breed: Pietrain). After application of pure bacteria on the surface of the explants these were treated with cold atmospheric plasma for up to 15 min. Two different plasma devices were evaluated. A decolonisation efficacy of 3 log10 steps was achieved already after 6 min of plasma treatment. Longer plasma treatment times achieved a killing rate of 5 log10 steps independently from the applied bacteria strains. Histological evaluations of untreated and treated skin areas upon cold atmospheric plasma treatment within 24 h showed no morphological changes as well as no significant degree of necrosis or apoptosis determined by the TUNEL-assay indicating that the porcine skin is still vital. This study demonstrates for the first time that cold atmospheric plasma is able to very efficiently kill bacteria applied to an intact skin surface using an ex vivo porcine skin model. The results emphasize the potential of cold atmospheric plasma as a new possible treatment option for decolonisation of human skin from bacteria in patients in the future without harming the surrounding tissue
Recommended from our members
Global lake thermal regions shift under climate change
Water temperature is critical for the ecology of lakes. However, the ability to predict its spatial and seasonal variation is constrained by the lack of a thermal classification system. Here we define lake thermal regions using objective analysis of seasonal surface temperature dynamics from satellite observations. Nine lake thermal regions are identified that mapped largely contiguously globally, and robustly even for small lakes. The regions differed from other global patterns, and so provide unique information. Using a lake model forced by 21st century climate projections we found that 12, 27 and 66% of lakes will change to a lower latitude thermal region by 2080-2099 for low, medium and high greenhouse gas concentration trajectories (Representative Concentration Pathways 2.6, 6.0 and 8.5) respectively. Under the worst-case scenario, a 79% reduction in the number of lakes in the northernmost thermal region is projected. This thermal region framework will facilitate the global scaling of lake-research
Effects of climate and land-use changes on fish catches across lakes at a global scale
Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security
Reproductive Hormone-Dependent and -Independent Contributions to Developmental Changes in Kisspeptin in GnRH-Deficient Hypogonadal Mice
Kisspeptin is a potent activator of GnRH-induced gonadotropin secretion and is a proposed central regulator of pubertal onset. In mice, there is a neuroanatomical separation of two discrete kisspeptin neuronal populations, which are sexually dimorphic and are believed to make distinct contributions to reproductive physiology. Within these kisspeptin neuron populations, Kiss1 expression is directly regulated by sex hormones, thereby confounding the roles of sex differences and early activational events that drive the establishment of kisspeptin neurons. In order to better understand sex steroid hormone-dependent and -independent effects on the maturation of kisspeptin neurons, hypogonadal (hpg) mice deficient in GnRH and its downstream effectors were used to determine changes in the developmental kisspeptin expression. In hpg mice, sex differences in Kiss1 mRNA levels and kisspeptin immunoreactivity, typically present at 30 days of age, were absent in the anteroventral periventricular nucleus (AVPV). Although immunoreactive kisspeptin increased from 10 to 30 days of age to levels intermediate between wild type (WT) females and males, corresponding increases in Kiss1 mRNA were not detected. In contrast, the hpg arcuate nucleus (ARC) demonstrated a 10-fold increase in Kiss1 mRNA between 10 and 30 days in both females and males, suggesting that the ARC is a significant center for sex steroid-independent pubertal kisspeptin expression. Interestingly, the normal positive feedback response of AVPV kisspeptin neurons to estrogen observed in WT mice was lost in hpg females, suggesting that exposure to reproductive hormones during development may contribute to the establishment of the ovulatory gonadotropin surge mechanism. Overall, these studies suggest that the onset of pubertal kisspeptin expression is not dependent on reproductive hormones, but that gonadal sex steroids critically shape the hypothalamic kisspeptin neuronal subpopulations to make distinct contributions to the activation and control of the reproductive hormone cascade at the time of puberty
Shared leadership can promote success in collaborative research networks in ecology
While collaborative science is becoming the norm in ecology, many ecologists participating in collaborations are less aware of the body of research that studies the processes by which collaborative teams organize and communicate.
Here, we discuss how we successfully used a shared leadership model in the Dry Rivers Research Coordination Network. We discuss how this model promoted our success in different stages of the project, using the Tuckman model of team development: forming, storming, norming, performing and adjourning.
Shared leadership in the forming phase helped us recruit a diverse membership from different scientific disciplines. In the storming and norming phases, shared leadership was especially useful in ensuring that all voices were heard in establishing group norms that promoted adhesion among and investment by RCN members. Shared leadership in the performing phase was crucial in providing opportunities for early career members to lead projects, and in the adjourning phase we reflected upon our entire collaboration to identify that shared leadership was crucial to our success, generating the thesis for this commentary.
It is our hope that others may find this discussion of our experience in implementing a shared leadership model useful in developing their own fruitful collaborations
Recommendations of the Neuroendocrinology Department of the Brazilian Society of Endocrinology and Metabolism for the diagnosis of Cushing’s disease in Brazil
Towards the Harmonization of Global Environmental Flow Estimates: Comparing the Global Environmental Flow Information System (GEFIS) with Country Data
The source of data used to estimate the e-flow requirement in Sustainable Development Goal (SDG) Indicator 6.4.2 (level of water stress: freshwater withdrawal as a proportion of available freshwater resources) is the Global Environmental Flow Information System (GEFIS), an online tool produced and managed by the International Water Management Institute (IWMI). In addition to the GEFIS estimate, the Food and Agriculture Organization of the United Nations (FAO), as the custodians of the SDG indicator, encourages countries to put forward their locally determined e-flow estimates, especially if it differs from the GEFIS estimate. To date, however, only a few countries have taken up this opportunity. The aim of this report is to compare e-flows estimated by GEFIS with independent e-flow assessments performed at the local level to gauge the level of agreement between the two sets of estimates. We compared e-flow estimates from GEFIS to local e-flow estimates at 533 river sites.Full Tex
The future of global river health monitoring
Rivers are the arteries of human civilisation and culture, providing essential goods and services that underpin water and food security, socio-economic development and climate resilience. They also support an extraordinary diversity of biological life. Human appropriation of land and water together with changes in climate have jointly driven rapid declines in river health and biodiversity worldwide, stimulating calls for an Emergency Recovery Plan for freshwater ecosystems. Yet freshwater ecosystems like rivers have been consistently under-represented within global agreements such as the UN Sustainable Development Goals and the UN Convention on Biological Diversity. Even where such agreements acknowledge that river health is important, implementation is hampered by inadequate global-scale indicators and a lack of coherent monitoring efforts. Consequently, there is no reliable basis for tracking global trends in river health, assessing the impacts of international agreements on river ecosystems and guiding global investments in river management to priority issues or regions. We reviewed national and regional approaches for river health monitoring to develop a comprehensive set of scalable indicators that can support “top-down” global surveillance while also facilitating standardised “bottom-up” local monitoring efforts. We evaluate readiness of these indicators for implementation at a global scale, based on their current status and emerging improvements in underlying data sources and methodologies. We chart a road map that identifies data and technical priorities and opportunities to advance global river health monitoring such that an adequate monitoring framework could be in place and implemented by 2030, with the potential for substantial enhancement by 2050. Lastly, we present recommendations for coordinated action and investment by policy makers, research funders and scientists to develop and implement the framework to support conservation and restoration of river health globally.Full Tex
- …
