142 research outputs found
Enhancing health outcomes for Māori elders through an intergenerational cultural exchange and physical activity programme: a cross-sectional baseline study
BACKGROUND: The study offers baseline data for a strengths-based approach emphasizing intergenerational cultural knowledge exchange and physical activity developed through a partnership with kaumātua (Māori elders) and kaumātua service providers. The study aims to identify the baseline characteristics, along with correlates of five key outcomes.
METHODS: The study design is a cross-sectional survey. A total of 75 kaumātua from six providers completed two physical functioning tests and a survey that included dependent variables based in a holistic model of health: health-related quality of life (HRQOL), self-rated health, spirituality, life satisfaction, and loneliness.
RESULTS: The findings indicate that there was good reliability and moderate scores on most variables. Specific correlates included the following: (a) HRQOL: emotional support (β = 0.31), and frequent interaction with a co-participant (β = 0.25); (b) self-rated health: frequency of moderate exercise (β = 0.32) and sense of purpose (β = 0.27); (c) spirituality: sense of purpose (β = 0.46), not needing additional help with daily tasks (β = 0.28), and level of confidence with cultural practices (β = 0.20); (d) life satisfaction: sense of purpose (β = 0.57), frequency of interaction with a co-participant (β = -0.30), emotional support (β = 0.25), and quality of relationship with a co-participant (β = 0.16); and (e) lower loneliness: emotional support (β = 0.27), enjoyment interacting with a co-participant (β = 0.25), sense of purpose (β = 0.24), not needing additional help with daily tasks (β = 0.28), and frequency of moderate exercise (β = 0.18).
CONCLUSION: This study provides the baseline scores and correlates of important social and health outcomes for the He Huarahi Tautoko (Avenue of Support) programme, a strengths-based approach for enhancing cultural connection and physical activity.fals
G-Protein Coupled Receptor Signaling Architecture of Mammalian Immune Cells
A series of recent studies on large-scale networks of signaling and metabolic systems revealed that a certain network structure often called “bow-tie network” are observed. In signaling systems, bow-tie network takes a form with diverse and redundant inputs and outputs connected via a small numbers of core molecules. While arguments have been made that such network architecture enhances robustness and evolvability of biological systems, its functional role at a cellular level remains obscure. A hypothesis was proposed that such a network function as a stimuli-reaction classifier where dynamics of core molecules dictate downstream transcriptional activities, hence physiological responses against stimuli. In this study, we examined whether such hypothesis can be verified using experimental data from Alliance for Cellular Signaling (AfCS) that comprehensively measured GPCR related ligands response for B-cell and macrophage. In a GPCR signaling system, cAMP and Ca2+ act as core molecules. Stimuli-response for 32 ligands to B-Cells and 23 ligands to macrophages has been measured. We found that ligands with correlated changes of cAMP and Ca2+ tend to cluster closely together within the hyperspaces of both cell types and they induced genes involved in the same cellular processes. It was found that ligands inducing cAMP synthesis activate genes involved in cell growth and proliferation; cAMP and Ca2+ molecules that increased together form a feedback loop and induce immune cells to migrate and adhere together. In contrast, ligands without a core molecules response are scattered throughout the hyperspace and do not share clusters. G-protein coupling receptors together with immune response specific receptors were found in cAMP and Ca2+ activated clusters. Analyses have been done on the original software applicable for discovering ‘bow-tie’ network architectures within the complex network of intracellular signaling where ab initio clustering has been implemented as well. Groups of potential transcription factors for each specific group of genes were found to be partly conserved across B-Cell and macrophage. A series of findings support the hypothesis
MicroRNA-125b Induces Metastasis by Targeting STARD13 in MCF-7 and MDA-MB-231 Breast Cancer Cells
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs to trigger either translation repression or mRNA degradation. miR-125b is down-regulated in human breast cancer cells compared with the normal ones except highly metastatic tumor cells MDA-MB-231. However, few functional studies were designed to investigate metastatic potential of miR-125b. In this study, the effects of miR-125b on metastasis in human breast cancer cells were studied, and the targets of miR-125b were also explored. Transwell migration assay, cell wound healing assay, adhesion assay and nude mice model of metastasis were utilized to investigate the effects of miR-125b on metastasis potential in vitro and in vivo. In addition, it was implied STARD13 (DLC2) was a direct target of miR-125b by Target-Scan analysis, luciferase reporter assay and western blot. Furthermore, activation of STARD13 was identified responsible for metastasis induced by miR-125b through a siRNA targeting STARD13. qRT-PCR, immunofluorescent assay and western blot was used to observe the variation of Vimentin and α-SMA in breast cancer cells. In summary, our study provided new insights into the function of miR-125b during the metastasis of breat cancer cells and also suggested the role of miR-125b in pro-metastasis by targeting STARD13
DNA damage and repair in endometrial cancer in correlation with the hOGG1 and RAD51 genes polymorphism
The cellular reaction to the DNA-damaging agents may modulate individual’s cancer susceptibility. This reaction is mainly determined by the efficacy of DNA repair, which in turn, may be influenced by the variability of DNA repair genes, expressed by their polymorphism. The hOGG1 gene encodes a glycosylase of base excision repair and RAD51 specifies a key protein in homologues recombination repair. Both proteins can be involved in the repair of DNA lesions, which are known to contribute to endometrial cancer. In the present work we determined the extent of basal DNA damage and the efficacy of removal of DNA damage induced by hydrogen peroxide and N-methyl-N′-nitro N-nitrosoguanidyne (MNNG) in peripheral blood lymphocytes of 30 endometrial cancer patients and 30 individuals without cancer. The results from DNA damage and repair study were correlated with the genotypes of two common polymorphisms of the hOGG1 and RAD51 genes: a G>C transversion at 1245 position of the hOGG1 gene producing a Ser → Cys substitution at the codon 326 (the Ser326Cys polymorphism) and a G>C substitution at 135 position of the RAD51 gene (the 135G>C polymorphism). DNA damage and repair were evaluated by alkaline single cell gel electrophoresis and genotypes were determined by restriction fragment length polymorphism PCR. We observed a strong association between endometrial cancer and the C/C genotype of the 135G>C polymorphism of the RAD51 gene. Moreover, there was a strong correlation between that genotype and endometrial cancer occurrence in subjects with a high level of basal DNA damage. We did not observe any correlation between the Ser326Cys polymorphism of the hOGG1 gene and endometrial cancer. Our result suggest that the 135G>C polymorphism of the RAD51 gene may be linked to endometrial cancer and can be considered as an additional marker of this disease
Choosing and Using a Plant DNA Barcode
The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance
Apnea of prematurity: from cause to treatment
Apnea of prematurity (AOP) is a common problem affecting premature infants, likely secondary to a “physiologic” immaturity of respiratory control that may be exacerbated by neonatal disease. These include altered ventilatory responses to hypoxia, hypercapnia, and altered sleep states, while the roles of gastroesophageal reflux and anemia remain controversial. Standard clinical management of the obstructive subtype of AOP includes prone positioning and continuous positive or nasal intermittent positive pressure ventilation to prevent pharyngeal collapse and alveolar atelectasis, while methylxanthine therapy is a mainstay of treatment of central apnea by stimulating the central nervous system and respiratory muscle function. Other therapies, including kangaroo care, red blood cell transfusions, and CO2 inhalation, require further study. The physiology and pathophysiology behind AOP are discussed, including the laryngeal chemoreflex and sensitivity to inhibitory neurotransmitters, as are the mechanisms by which different therapies may work and the potential long-term neurodevelopmental consequences of AOP and its treatment
Factors affecting branch failures in open-grown trees during a snowstorm in Massachusetts, USA
A Measure of the Parent-Team Alliance in Youth Residential Psychiatry: The Revised Short Working Alliance Inventory
Autonomic nervous system and hypothalamic–pituitary–adrenal axis response to experimentally induced cold pain in adolescent non-suicidal self-injury – study protocol
Evaluating whether direct-to-consumer marketing can increase demand for evidence-based practice among parents of adolescents with substance use disorders: rationale and protocol
- …
