25 research outputs found
Multiplicity of cerebrospinal fluid functions: New challenges in health and disease
This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces
Exposure to intrauterine inflammation alters metabolomic profiles in the amniotic fluid, fetal and neonatal brain in the mouse
Maternal genotype determines kynurenic acid levels in the fetal brain: Implications for the pathophysiology of schizophrenia
Radiation oncology as part of medical education—current status and possible digital future prospects
The detection of capsaicin and dihydrocapsaicin in horse serum following long-term local administration
Transient Inactivation of the Neonatal Ventral Hippocampus Impairs Attentional Set-Shifting Behavior: Reversal with an α7 Nicotinic Agonist
Cognitive deficits represent a core symptom cluster in schizophrenia that are thought to reflect developmental dysregulations within a neural system involving the ventral hippocampus (VH), nucleus accumbens (NAC), and prefrontal cortex (PFC). The present experiments determined the cognitive effects of transiently inactivating VH in rats during a sensitive period of development. Neonatal (postnatal day 7, PD7) and adolescent (PD32) male rats received a single bilateral infusion of saline or tetrodotoxin (TTX) within the VH to transiently inactivate local circuitry and efferent outflow. Rats were tested as adults on an attentional set-shifting task. Performance in this task depends upon the integrity of the PFC and NAC. TTX infusions did not affect the initial acquisition or ability to learn an intra-dimensional shift. However, TTX rats required a greater number of trials than did controls to acquire the first reversal and extra-dimensional shift (ED) stages. These impairments were age and region-specific as rats infused with TTX into the VH at PD32, or into the dorsal hippocampus at PD7, exhibited performance in the task similar to that of controls. Finally, acute systemic administration of the partial α7 nicotinic acetylcholine receptor (nAChR) agonist SSR 180711 (3.0 mg/kg) eliminated the TTX-induced performance deficits. Given that patients with schizophrenia exhibit hippocampal pathophysiology and deficits in the ED stages of set-shifting tasks, our results support the significance of transient hippocampal inactivation as an animal model for studying the cognitive impairments in schizophrenia as well as the pro-cognitive therapeutic potential of α7 nAChR agonists
