530 research outputs found

    Migrations and habitat use of the smooth hammerhead shark (Sphyrna zygaena) in the Atlantic Ocean

    Get PDF
    The smooth hammerhead shark, Sphyrna zygaena, is a cosmopolitan semipelagic shark captured as bycatch in pelagic oceanic fisheries, especially pelagic longlines targeting swordfish and/or tunas. From 2012 to 2016, eight smooth hammerheads were tagged with Pop-up Satellite Archival Tags in the inter-tropical region of the Northeast Atlantic Ocean, with successful transmissions received from seven tags (total of 319 tracking days). Results confirmed the smooth hammerhead is a highly mobile species, as the longest migration ever documented for this species (> 6600 km) was recorded. An absence of a diel vertical movement behavior was noted, with the sharks spending most of their time at surface waters (0-50 m) above 23 degrees C. The operating depth of the pelagic long-line gear was measured with Minilog Temperature and Depth Recorders, and the overlap with the species vertical distribution was calculated. The overlap is taking place mainly during the night and is higher for juveniles (similar to 40% of overlap time). The novel information presented can now be used to contribute to the provision of sustainable management tools and serve as input for Ecological Risk Assessments for smooth hammerheads caught in Atlantic pelagic longline fisheries.Oceanario de Lisboa through Project "SHARK-TAG: Migrations and habitat use of the smooth hammerhead shark in the Atlantic Ocean"; Investigador-FCT from the Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [Ref: IF/00253/2014]; EU European Social Fund; Programa Operacional Potencial Human

    Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis

    Get PDF
    © 2010 Cascão et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by sustained synovitis. Recently, several studies have proposed neutrophils and Th17 cells as key players in the onset and perpetuation of this disease. The main goal of this work was to determine whether cytokines driving neutrophil and Th17 activation are dysregulated in very early rheumatoid arthritis patients with less than 6 weeks of disease duration and before treatment (VERA). Methods: Cytokines related to neutrophil and Th17 activation were quantified in the serum of VERA and established RA patients and compared with other very early arthritis (VEA) and healthy controls. Synovial fluid (SF) from RA and osteoarthritis (OA) patients was also analyzed. Results: VERA patients had increased serum levels of cytokines promoting Th17 polarization (IL-1b and IL-6), as well as IL-8 and Th17-derived cytokines (IL-17A and IL-22) known to induce neutrophil-mediated inflammation. In established RA this pattern is more evident within the SF. Early treatment with methotrexate or corticosteroids led to clinical improvement but without an impact on the cytokine pattern. Conclusions: VERA patients already display increased levels of cytokines related with Th17 polarization and neutrophil recruitment and activation, a dysregulation also found in SF of established RA. 0 Thus, our data suggest that a cytokine-milieu favoring Th17 and neutrophil activity is an early event in RA pathogenesis.This work was supported by a grant from Sociedade Portuguesa de Reumatologia/Schering-Plough 2005. RAM and RC were funded by Fundação para a Ciência e a Tecnologia (FCT) SFRH/BD/30247/2006 and SFRH/BD/40513/2007, respectively. MMS-C was funded by Marie Curie Intra-European Fellowship PERG-2008-239422 and a EULAR Young Investigator Award

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content

    Reprogramming energy metabolism and inducing angiogenesis : co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas

    Get PDF
    Background: Deregulation of cellular energetic metabolism was recently pointed out as a hallmark of cancer cells. This deregulation involves a metabolic reprogramming that leads to a high production of lactate. Lactate efflux, besides contributing for the glycolytic flux, also acts in the extracellular matrix, contributing for cancer malignancy, by, among other effects, induction of angiogenesis. However, studies on the interplay between cancer metabolism and angiogenesis are scarce. Therefore, the aim of the present study was to evaluate the metabolic and vascular molecular profiles of cervical adenocarcinomas, their co-expression, and their relation to the clinical and pathological behavior. Methods: The immunohistochemical expression of metabolism-related proteins (MCT1, MCT4, CD147, GLUT1 and CAIX) as well as VEGF family members (VEGF-A, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2 and VEGFR-3) was assessed in a series of 232 cervical adenocarcinomas. The co-expression among proteins was assessed and the expression profiles were associated with patients’ clinicopathological parameters. Results: Among the metabolism-related proteins, MCT4 and CAIX were the most frequently expressed in cervical adenocarcinomas while CD147 was the less frequently expressed protein. Overall, VEGF family members showed a strong and extended expression with VEGF-C and VEGFR-2 as the most frequently expressed and VEGFR-1 as the less expressed member. Co-expression of MCT isoforms with VEGF family members was demonstrated. Finally, MCT4 was associated with parametrial invasion and HPV18 infection, CD147 and GLUT1 with distant metastasis, CAIX with tumor size and HPV18 infection, and VEGFR-1 with local and lymphnode metastasis. Conclusions: The results herein presented provide additional evidence for a crosstalk between deregulating cellular energetics and inducing angiogenesis. Also, the metabolic remodeling and angiogenic switch are relevant to cancer progression and aggressiveness in adenocarcinomas.CP received a post-doctoral fellowship (SFRH/BPD/69479/2010) and FM-S received a doctoral fellowship (SFRH/BD/87139/2012) from FCT (Portuguese Foundation for Science and Technology). This work was supported by the FCT grant ref. PTDC/SAU-FCF/104347/2008, under the scope of "Programa Operacional Tematico Factores de Competitividade" (COMPETE) of "Quadro Comunitario de Apoio III" and co-financed by Fundo Comunitario Europeu FEDER, and also by FAPESP 2008/03232-1

    Threatened reef corals of the world

    Get PDF
    10.1371/journal.pone.0034459PLoS ONE73

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing.

    Get PDF
    Following central nervous system (CNS) demyelination, adult oligodendrocyte progenitor cells (OPCs) can differentiate into new myelin-forming oligodendrocytes in a regenerative process called remyelination. Although remyelination is very efficient in young adults, its efficiency declines progressively with ageing. Here we performed proteomic analysis of OPCs freshly isolated from the brains of neonate, young and aged female rats. Approximately 50% of the proteins are expressed at different levels in OPCs from neonates compared with their adult counterparts. The amount of myelin-associated proteins, and proteins associated with oxidative phosphorylation, inflammatory responses and actin cytoskeletal organization increased with age, whereas cholesterol-biosynthesis, transcription factors and cell cycle proteins decreased. Our experiments provide the first ageing OPC proteome, revealing the distinct features of OPCs at different ages. These studies provide new insights into why remyelination efficiency declines with ageing and potential roles for aged OPCs in other neurodegenerative diseases

    Lead exposure and periodontitis in US adults

    Full text link
    Lead is known to have significant effects on bone metabolism and the immune system. This study tested the hypothesis that lead exposure affects periodontitis in adults. Material and Methods:  This study used the data from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–94). It analyzed data from 2500 men and 2399 women, 20–56 yr old, who received complete periodontal examination. Periodontitis was defined as the presence of > 20% of mesial sites with ≥ 4 mm of attachment loss. Lead exposure was grouped into three categories:  7 μg/dL. Covariates were cotinine levels, poverty ratio, race/ethnicity, education, bone mineral density, diabetes, calcium intake, dental visit, and menopause (for women). All analyses were performed separately for men and women and considering the effect design. Univariate, bivariate, and stratified analysis was followed by multivariable analysis by estimating prevalence ratios through poisson regression. Results:  After adjustment for confounders, the prevalence ratios, comparing those with a lead blood level of > 7 μg/dL to those with a lead blood level of < 3 μg/dL was 1.70 (95% confidence interval (CI): 1.02, 2.85) for men and 3.80 (95% CI: 1.66, 8.73) for women. Conclusion:  The lead blood level was positively and statistically associated with periodontitis for both men and women. Considering the public health importance of periodontitis and lead exposure, further studies are necessary to confirm this association.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65253/1/j.1600-0765.2006.00913.x.pd

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore