84 research outputs found
Domain-Based Identification and Analysis of Glutamate Receptor Ion Channels and Their Relatives in Prokaryotes
Voltage-gated and ligand-gated ion channels are used in eukaryotic organisms for the purpose of electrochemical signaling. There are prokaryotic homologues to major eukaryotic channels of these sorts, including voltage-gated sodium, potassium, and calcium channels, Ach-receptor and glutamate-receptor channels. The prokaryotic homologues have been less well characterized functionally than their eukaryotic counterparts. In this study we identify likely prokaryotic functional counterparts of eukaryotic glutamate receptor channels by comprehensive analysis of the prokaryotic sequences in the context of known functional domains present in the eukaryotic members of this family. In particular, we searched the nonredundant protein database for all proteins containing the following motif: the two sections of the extracellular glutamate binding domain flanking two transmembrane helices. We discovered 100 prokaryotic sequences containing this motif, with a wide variety of functional annotations. Two groups within this family have the same topology as eukaryotic glutamate receptor channels. Group 1 has a potassium-like selectivity filter. Group 2 is most closely related to eukaryotic glutamate receptor channels. We present analysis of the functional domain architecture for the group of 100, a putative phylogenetic tree, comparison of the protein phylogeny with the corresponding species phylogeny, consideration of the distribution of these proteins among classes of prokaryotes, and orthologous relationships between prokaryotic and human glutamate receptor channels. We introduce a construct called the Evolutionary Domain Network, which represents a putative pathway of domain rearrangements underlying the domain composition of present channels. We believe that scientists interested in ion channels in general, and ligand-gated ion channels in particular, will be interested in this work. The work should also be of interest to bioinformatics researchers who are interested in the use of functional domain-based analysis in evolutionary and functional discovery
5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells
<p>Abstract</p> <p>Background</p> <p>Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.</p> <p>Methods</p> <p>The cardiogenic potential of ASCs was analysed by studying the morphological changes after induction, the changes in the cardiogenic genes expression i.e. GATA4, MLC-2v, MLC-2a, NKX2.5, β-MHC, α-MHC, Atrial natriuretic peptide (ANP), Connexin 43, Cardiac Troponin C, Cardiac Troponin I and myocyte enhancer factor (MEF2C) and the changes of embryonic stem cells genes expression at P5 and P10 using quantitative PCR.</p> <p>Results</p> <p>Our results showed that the induced ASCs did not show significant morphological difference compared to the non-induced ASCs. While quantitative PCR data indicated that most cardiogenic genes and stemness genes expression level decreased after induction at P5 and P10.</p> <p>Conclusion</p> <p>5-azacytidine is insufficient for the cardiogenic induction of the ASCs.</p
Monocyte Gene Expression Signature of Patients with Early Onset Coronary Artery Disease
The burden of cardiovascular disease (CVD) cannot be fully addressed by therapy targeting known pathophysiological pathways. Even with stringent control of all risk factors CVD events are only diminished by half. A number of additional pathways probably play a role in the development of CVD and might serve as novel therapeutic targets. Genome wide expression studies represent a powerful tool to identify such novel pathways. We compared the expression profiles in monocytes from twenty two young male patients with premature familial CAD with those from controls matched for age, sex and smoking status, without a family history of CVD. Since all patients were on statins and aspirin treatment, potentially affecting the expression of genes in monocytes, twelve controls were subsequently treated with simvastatin and aspirin for 6 and 2 weeks, respectively
Antimetastatic Effects of Phyllanthus on Human Lung (A549) and Breast (MCF-7) Cancer Cell Lines
BACKGROUND: Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells. METHODOLOGY/PRINCIPAL FINDINGS: Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC(50) values ranging from 50-180 µg/ml and 65-470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20-200 µg/ml for methanolic extracts and 50-500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts. CONCLUSIONS/SIGNIFICANCE: The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence, Phyllanthus could be a valuable candidate in the treatment of metastatic cancers
Walker-Warburg syndrome
Walker-Warburg Syndrome (WWS) is a rare form of autosomal recessive congenital muscular dystrophy associated with brain and eye abnormalities. WWS has a worldwide distribution. The overall incidence is unknown but a survey in North-eastern Italy has reported an incidence rate of 1.2 per 100,000 live births. It is the most severe form of congenital muscular dystrophy with most children dying before the age of three years. WWS presents at birth with generalized hypotonia, muscle weakness, developmental delay with mental retardation and occasional seizures. It is associated with type II cobblestone lissencephaly, hydrocephalus, cerebellar malformations, eye abnormalities and congenital muscular dystrophy characterized by hypoglycosylation of α-dystroglycan. Several genes have been implicated in the etiology of WWS, and others are as yet unknown. Several mutations were found in the Protein O-Mannosyltransferase 1 and 2 (POMT1 and POMT2) genes, and one mutation was found in each of the fukutin and fukutin-related protein (FKRP) genes. Laboratory investigations usually show elevated creatine kinase, myopathic/dystrophic muscle pathology and altered α-dystroglycan. Antenatal diagnosis is possible in families with known mutations. Prenatal ultrasound may be helpful for diagnosis in families where the molecular defect is unknown. No specific treatment is available. Management is only supportive and preventive
Interaction of Trichomonas vaginalis and Tritrichomonas foetus with keratin: an important role in parasite infection
PTRF/Cavin-1 and MIF Proteins Are Identified as Non-Small Cell Lung Cancer Biomarkers by Label-Free Proteomics
With the completion of the human genome sequence, biomedical sciences have entered in the “omics” era, mainly due to high-throughput genomics techniques and the recent application of mass spectrometry to proteomics analyses. However, there is still a time lag between these technological advances and their application in the clinical setting. Our work is designed to build bridges between high-performance proteomics and clinical routine. Protein extracts were obtained from fresh frozen normal lung and non-small cell lung cancer samples. We applied a phosphopeptide enrichment followed by LC-MS/MS. Subsequent label-free quantification and bioinformatics analyses were performed. We assessed protein patterns on these samples, showing dozens of differential markers between normal and tumor tissue. Gene ontology and interactome analyses identified signaling pathways altered on tumor tissue. We have identified two proteins, PTRF/cavin-1 and MIF, which are differentially expressed between normal lung and non-small cell lung cancer. These potential biomarkers were validated using western blot and immunohistochemistry. The application of discovery-based proteomics analyses in clinical samples allowed us to identify new potential biomarkers and therapeutic targets in non-small cell lung cancer
Stem cells therapy for cardiovascular repair in ischemic heart disease: How to predict and secure optimal outcome?
Analysis of arterial intimal hyperplasia: review and hypothesis
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? Hypothesis: I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it "benign intimal hyperplasia". However, normal or "benign " intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates earl
Development of tissue-engineered models of oral dysplasia and early invasive oral squamous cell carcinoma
BACKGROUND: Current organotypic models of dysplasia and oral squamous cell carcinoma (OSCC) lack the complexity that mimics in vivo tissue. Here we describe a three-dimensional in vitro model of the oral epithelium that replicates tumour progression from dysplasia to an invasive phenotype. METHODS: The OSCC cell lines were seeded as a cell suspension (D20, Cal27) or as multicellular tumour spheroids (FaDu) with oral fibroblasts on to a de-epidermised acellular dermis to generate tissue-engineered models and compared with patient biopsies. RESULTS: The D20 and Cal27 cells generated a model of epithelial dysplasia. Overtime Cal27 cells traversed the basement membrane and invaded the connective tissue to reproduce features of early invasive OSCC. When seeded onto a model of the normal oral mucosa, FaDu spheroids produced a histological picture mimicking carcinoma in situ with severe cellular atypia juxtaposed to normal epithelium. CONCLUSION: It is possible to culture in vitro models with the morphological appearance and histological characteristics of dysplasia and tumour cell invasion seen in vivo using native dermis. Such models could facilitate study of the molecular processes involved in malignant transformation, invasion and tumour growth as well as in vitro testing of new treatments, diagnostic tests and drug delivery systems for OSCC
- …
