268 research outputs found

    Identification of the factors associated with outcomes in a condition management programme

    Get PDF
    <p>Background: A requirement of the Government’s Pathways to Work (PtW) agenda was to introduce a Condition Management Programme (CMP). The aim of the present study was to identify the differences between those who engaged and made progress in this telephone-based biopsychosocial intervention, in terms of their health, and those who did not and to determine the client and practitioner characteristics and programme elements associated with success in a programme aimed at improving health.</p> <p>Methods: Data were obtained from the CMP electronic spreadsheets and clients paper-based case records. CMP standard practice was that questionnaires were administered during the pre- and post-assessment phases over the telephone. Each client’s record contains their socio-demographic data, their primary health condition, as well as the pre- and post-intervention scores of the health assessment tool administered. Univariate and multivariate statistical analysis was used to investigate the relationships between the database variables. Clients were included in the study if their records were available for analysis from July 2006 to December 2007.</p> <p> Results: On average there were 112 referrals per month, totalling 2016 referrals during the evaluation period. The majority (62.8%) of clients had a mental-health condition. Successful completion of the programme was 28.5% (575 “completers”; 144 “discharges”). Several factors, such as age, health condition, mode of contact, and practitioner characteristics, were significant determinants of participation and completion of the programme. The results showed that completion of the CMP was associated with a better mental-health status, by reducing the number of clients that were either anxious, depressed or both, before undertaking the programme, from 74% to 32.5%.</p> <p>Conclusions: Our findings showed that an individual's characteristics are associated with success in the programme, defined as completing the intervention and demonstrating an improved health status. This study provides some evidence that the systematic evaluation of such programmes and interventions could identify ways in which they could be improved.</p&gt

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere

    Get PDF
    Oxidation of methanethiol (MT) is a significant step in the sulfur cycle. MT is an intermediate of metabolism of globally significant organosulfur compounds including dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS), which have key roles in marine carbon and sulfur cycling. In aerobic bacteria, MT is degraded by a MT oxidase (MTO). The enzymatic and genetic basis of MT oxidation have remained poorly characterized. Here, we identify for the first time the MTO enzyme and its encoding gene (mtoX) in the DMS-degrading bacterium Hyphomicrobium sp. VS. We show that MTO is a homotetrameric metalloenzyme that requires Cu for enzyme activity. MTO is predicted to be a soluble periplasmic enzyme and a member of a distinct clade of the Selenium-binding protein (SBP56) family for which no function has been reported. Genes orthologous to mtoX exist in many bacteria able to degrade DMS, other one-carbon compounds or DMSP, notably in the marine model organism Ruegeria pomeroyi DSS-3, a member of the Rhodobacteraceae family that is abundant in marine environments. Marker exchange mutagenesis of mtoX disrupted the ability of R. pomeroyi to metabolize MT confirming its function in this DMSP-degrading bacterium. In R. pomeroyi, transcription of mtoX was enhanced by DMSP, methylmercaptopropionate and MT. Rates of MT degradation increased after pre-incubation of the wild-type strain with MT. The detection of mtoX orthologs in diverse bacteria, environmental samples and its abundance in a range of metagenomic data sets point to this enzyme being widely distributed in the environment and having a key role in global sulfur cycling.The ISME Journal advance online publication, 24 October 2017; doi:10.1038/ismej.2017.148

    Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea

    Get PDF
    A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study

    Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean

    Get PDF
    As part of an ongoing survey of microbial community gene expression in the ocean, we sequenced and compared ~38 Mbp of community transcriptomes and ~157 Mbp of community genomes from four bacterioplankton samples, along a defined depth profile at Station ALOHA in North Pacific subtropical gyre (NPSG). Taxonomic analysis suggested that the samples were dominated by three taxa: Prochlorales, Consistiales and Cenarchaeales, which comprised 36–69% and 29–63% of the annotated sequences in the four DNA and four cDNA libraries, respectively. The relative abundance of these taxonomic groups was sometimes very different in the DNA and cDNA libraries, suggesting differential relative transcriptional activities per cell. For example, the 125 m sample genomic library was dominated by Pelagibacter (~36% of sequence reads), which contributed fewer sequences to the community transcriptome (~11%). Functional characterization of highly expressed genes suggested taxon-specific contributions to specific biogeochemical processes. Examples included Roseobacter relatives involved in aerobic anoxygenic phototrophy at 75 m, and an unexpected contribution of low abundance Crenarchaea to ammonia oxidation at 125 m. Read recruitment using reference microbial genomes indicated depth-specific partitioning of coexisting microbial populations, highlighted by a transcriptionally active high-light-like Prochlorococcus population in the bottom of the photic zone. Additionally, nutrient-uptake genes dominated Pelagibacter transcripts, with apparent enrichment for certain transporter types (for example, the C4-dicarboxylate transport system) over others (for example, phosphate transporters). In total, the data support the utility of coupled DNA and cDNA analyses for describing taxonomic and functional attributes of microbial communities in their natural habitats.Gordon and Betty Moore FoundationUnited States. Dept. of EnergyNational Science Foundation (U.S.) (Science and Technology Center Award EF0424599

    Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea

    Get PDF
    Salinity is a major factor controlling the distribution of biota in aquatic systems, and most aquatic multicellular organisms are either adapted to life in saltwater or freshwater conditions. Consequently, the saltwater–freshwater mixing zones in coastal or estuarine areas are characterized by limited faunal and floral diversity. Although changes in diversity and decline in species richness in brackish waters is well documented in aquatic ecology, it is unknown to what extent this applies to bacterial communities. Here, we report a first detailed bacterial inventory from vertical profiles of 60 sampling stations distributed along the salinity gradient of the Baltic Sea, one of world's largest brackish water environments, generated using 454 pyrosequencing of partial (400 bp) 16S rRNA genes. Within the salinity gradient, bacterial community composition altered at broad and finer-scale phylogenetic levels. Analogous to faunal communities within brackish conditions, we identified a bacterial brackish water community comprising a diverse combination of freshwater and marine groups, along with populations unique to this environment. As water residence times in the Baltic Sea exceed 3 years, the observed bacterial community cannot be the result of mixing of fresh water and saltwater, but our study represents the first detailed description of an autochthonous brackish microbiome. In contrast to the decline in the diversity of multicellular organisms, reduced bacterial diversity at brackish conditions could not be established. It is possible that the rapid adaptation rate of bacteria has enabled a variety of lineages to fill what for higher organisms remains a challenging and relatively unoccupied ecological niche

    Polydrug Use among IDUs in Tijuana, Mexico: Correlates of Methamphetamine Use and Route of Administration by Gender

    Get PDF
    Tijuana is situated on the Mexico–USA border adjacent to San Diego, CA, on a major drug trafficking route. Increased methamphetamine trafficking in recent years has created a local consumption market. We examined factors associated with methamphetamine use and routes of administration by gender among injection drug users (IDUs). From 2006–2007, IDUs ≥18 years old in Tijuana were recruited using respondent-driven sampling, interviewed, and tested for HIV, syphilis, and TB. Logistic regression was used to assess associations with methamphetamine use (past 6 months), stratified by gender. Among 1,056 participants, methamphetamine use was more commonly reported among females compared to males (80% vs. 68%, p < 0.01), particularly, methamphetamine smoking (57% vs. 34%; p < 0.01). Among females (N = 158), being aged >35 years (AOR, 0.2; 95% CI, 0.1–0.6) was associated with methamphetamine use. Among males (N = 898), being aged >35 years (AOR, 0.5; 95% CI, 0.3–0.6), homeless (AOR, 1.4 (0.9–2.2)), and ever reporting sex with another male (MSM; AOR, 1.9; 95% CI, 1.4–2.7) were associated with methamphetamine use. Among males, a history of MSM was associated with injection, while sex trade and >2 casual sex partners were associated with multiple routes of administration. HIV was higher among both males and females reporting injection as the only route of methamphetamine administration. Methamphetamine use is highly prevalent among IDUs in Tijuana, especially among females. Routes of administration differed by gender and subgroup which has important implications for tailoring harm reduction interventions and drug abuse treatment

    HER 2/neu protein expression in colorectal cancer

    Get PDF
    BACKGROUND: Conflicting data exist about the prevalence of HER-2/neu overexpression in colorectal cancer ranging from 0 to 83 %. In our study we tried to clarify the extent of expression and its relationship to clinicopathological parameters. METHODS: This study involved 77 specimens of malignant colorectal cancer lesions of surgically resected patients. HER-2/neu immunohistochemistry was performed using the Hercep-Test Kit. RESULTS: Out of 77 specimens, 56 were Her-2/neu negative (70%), 20 (26%) showed a barely immunostaining (1+), only 1 (1%) was moderately (2+) and 2 (3%) were strongly positive (3+). Her-2/neu staining (moderately and strongly positive) was only detected in primary tumours of patients with confirmed metastases. No relationship was found between membranous HER-2 expression and patients' gender or differentiation. The median survival time of patients with positive HER-2/neu immunostaining was 21 versus 39 months in patients without HER-2/neu expression (p = 0.088). CONCLUSION: The c-erbB protein expression was observed in colorectal cancer but rarely in the therapeutic range (2+ and 3+). There was no significant association with tumour grade, gender, localization of the primary tumour or survival. These data indicate that c-erbB-2 is unlikely to play a major role in the therapeutic management of colorectal cancer

    Diversity and dynamics of rare and of resident bacterial populations in coastal sands

    Get PDF
    Coastal sands filter and accumulate organic and inorganic materials from the terrestrial and marine environment, and thus provide a high diversity of microbial niches. Sands of temperate climate zones represent a temporally and spatially highly dynamic marine environment characterized by strong physical mixing and seasonal variation. Yet little is known about the temporal fluctuations of resident and rare members of bacterial communities in this environment. By combining community fingerprinting via pyrosequencing of ribosomal genes with the characterization of multiple environmental parameters, we disentangled the effects of seasonality, environmental heterogeneity, sediment depth and biogeochemical gradients on the fluctuations of bacterial communities of marine sands. Surprisingly, only 3–5% of all bacterial types of a given depth zone were present at all times, but 50–80% of them belonged to the most abundant types in the data set. About 60–70% of the bacterial types consisted of tag sequences occurring only once over a period of 1 year. Most members of the rare biosphere did not become abundant at any time or at any sediment depth, but varied significantly with environmental parameters associated with nutritional stress. Despite the large proportion and turnover of rare organisms, the overall community patterns were driven by deterministic relationships associated with seasonal fluctuations in key biogeochemical parameters related to primary productivity. The maintenance of major biogeochemical functions throughout the observation period suggests that the small proportion of resident bacterial types in sands perform the key biogeochemical processes, with minimal effects from the rare fraction of the communities
    corecore