4,340 research outputs found
Building an Argument for the Use of Science Fiction in HCI Education
Science fiction literature, comics, cartoons and, in particular, audio-visual
materials, such as science fiction movies and shows, can be a valuable addition
in Human-computer interaction (HCI) Education. In this paper, we present an
overview of research relative to future directions in HCI Education, distinct
crossings of science fiction in HCI and Computer Science teaching and the
Framework for 21st Century Learning. Next, we provide examples where science
fiction can add to the future of HCI Education. In particular, we argue herein
first that science fiction, as tangible and intangible cultural artifact, can
serve as a trigger for creativity and innovation and thus, support us in
exploring the design space. Second, science fiction, as a means to analyze
yet-to-come HCI technologies, can assist us in developing an open-minded and
reflective dialogue about technological futures, thus creating a singular base
for critical thinking and problem solving. Provided that one is cognizant of
its potential and limitations, we reason that science fiction can be a
meaningful extension of selected aspects of HCI curricula and research.Comment: 6 pages, 1 table, IHSI 2019 accepted submissio
Recommended from our members
De-pollution efficacy of photocatalytic roofing granules
Photocatalytic building surfaces can harness sunlight to reduce urban air pollution. The NOx abatement capacity of TiO2-coated granules used in roofing products was evaluated for commercial product development. A laboratory test chamber and ancillary setup were built following conditions prescribed by ISO Standard 22197-1. It was validated by exposing reference P25-coated aluminum plates to a 3 L min−1 air flow enriched in 1 ppm NO under UVA irradiation (360 nm, 11.5 W m−2). We characterized prototype granule-surfaced asphalt shingles and loose granules prepared with different TiO2 loadings and post-treatment formulations. Tests performed at surface temperatures of 25 and 60 °C showed that NOx abatement was more effective at the higher temperature. Preliminary tests explored the use of 1 ppm NO2 and of 1 ppm and 0.3 ppm NO/NO2 mixtures. Specimens were aged in a laboratory accelerated weathering apparatus, and by exposure to the outdoor environment over periods that included dry and rainy seasons. Laboratory aging led to higher NO removal and NO2 formation rates, and the same catalyst activation was observed after field exposure with frequent precipitation. However, exposure during the dry season reduced the performance. This inactivation was mitigated by cleaning the surface of field-exposed specimens. Doubling the TiO2 loading led to a 50–150% increase in NO removal and NOx deposition rates. Application of different post-treatment coatings decreased NO removal rates (21–35%) and NOx deposition rates (26–74%) with respect to untreated granules. The mass balance of nitrogenated species was assessed by extracting granules after UV exposure in a 1 ppm NO-enriched atmosphere
The Complexity of Graph-Based Reductions for Reachability in Markov Decision Processes
We study the never-worse relation (NWR) for Markov decision processes with an
infinite-horizon reachability objective. A state q is never worse than a state
p if the maximal probability of reaching the target set of states from p is at
most the same value from q, regard- less of the probabilities labelling the
transitions. Extremal-probability states, end components, and essential states
are all special cases of the equivalence relation induced by the NWR. Using the
NWR, states in the same equivalence class can be collapsed. Then, actions
leading to sub- optimal states can be removed. We show the natural decision
problem associated to computing the NWR is coNP-complete. Finally, we ex- tend
a previously known incomplete polynomial-time iterative algorithm to
under-approximate the NWR
The Career Intentions, Work-Life Balance and Retirement Plans of Dental Undergraduates at the University of Bristol
Light Sneutrino Dark Matter at the LHC
In supersymmetric (SUSY) models with Dirac neutrino masses, a weak-scale
trilinear A-term that is not proportional to the small neutrino Yukawa
couplings can induce a sizable mixing between left and right-handed sneutrinos.
The lighter sneutrino mass eigenstate can hence become the lightest SUSY
particle (LSP) and a viable dark matter candidate. In particular, it can be an
excellent candidate for light dark matter with mass below ~10 GeV. Such a light
mixed sneutrino LSP has a dramatic effect on SUSY signatures at the LHC, as
charginos decay dominantly into the light sneutrino plus a charged lepton, and
neutralinos decay invisibly to a neutrino plus a sneutrino. We perform a
detailed study of the LHC potential to resolve the light sneutrino dark matter
scenario by means of three representative benchmark points with different
gluino and squark mass hierarchies. We study in particular the determination of
the LSP (sneutrino) mass from cascade decays involving charginos, using the mT2
variable. Moreover, we address measurements of additional invisible sparticles,
in our case the lightest neutralino, and the question of discrimination against
the MSSM.Comment: 25 pages, 16 figure
Positive words carry less information than negative words
We show that the frequency of word use is not only determined by the word
length \cite{Zipf1935} and the average information content
\cite{Piantadosi2011}, but also by its emotional content. We have analyzed
three established lexica of affective word usage in English, German, and
Spanish, to verify that these lexica have a neutral, unbiased, emotional
content. Taking into account the frequency of word usage, we find that words
with a positive emotional content are more frequently used. This lends support
to Pollyanna hypothesis \cite{Boucher1969} that there should be a positive bias
in human expression. We also find that negative words contain more information
than positive words, as the informativeness of a word increases uniformly with
its valence decrease. Our findings support earlier conjectures about (i) the
relation between word frequency and information content, and (ii) the impact of
positive emotions on communication and social links.Comment: 16 pages, 3 figures, 3 table
Resolving the Gap and AU-scale Asymmetries in the Pre-transitional Disk of V1247 Orionis
archiveprefix: arXiv primaryclass: astro-ph.SR keywords: accretion, accretion disks, protoplanetary disks, stars: pre-main sequence, techniques: interferometric eid: 80 adsurl: http://adsabs.harvard.edu/abs/2013ApJ...768...80K adsnote: Provided by the SAO/NASA Astrophysics Data SystemarticlePre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5-13 μm), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at 0.18 AU from the star) that is separated from the optically thick outer disk (radii gsim 46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K', and L' bands, we detect asymmetries in the brightness distribution on scales of ~15-40 AU, i.e., within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.This work was done in part under contract with the California Institute of Technology (Caltech), funded by NASA through the Sagan Fellowship Program (S.K. and C.E. are Sagan Fellows). Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This work was supported in part by the Aerospace Corporation's Independent Research and Development (IR&D) program. This work was supported by NASA ADP grant NNX09AC73G
Resolving the gap and AU-scale asymmetries in pre-transitional disks of V1247 ORIONIS
adsurl: http://adsabs.harvard.edu/abs/2013prpl.conf2B051K adsnote: Provided by the SAO/NASA Astrophysics Data SystemPre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of
young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism,
we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck
Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure
from near- to mid-infrared wavelengths (1.5–13µm), tracing material at different temperatures and over a wide
range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at
0.18 AU from the star) that is separated from the optically thick outer disk (radii !46 AU), providing unambiguous
evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled
with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this
optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant
contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the
H, K′
, and L′ bands, we detect asymmetries in the brightness distribution on scales of ∼15–40 AU, i.e., within
the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with
wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution
of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly
reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the
gap clearing.NASA through the Sagan Fellowship ProgramW. M. Keck FoundationAerospace Corporation’s Independent Research and Development (IR&D) programNASA AD
Confronting Standard Models of Proto–Planetary Disks With New Mid–Infrared Sizes from the Keck Interferometer
This is the final version of the article. Available from American Astronomical Society via the DOI in this record.The accepted author manuscript is in ORE at http://hdl.handle.net/10871/21611We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used "star + inner dust rim + flared disk" class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at "transition disk"-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.M.S. was supported by NASA ADAP grant NNX09AC73G. R.W.R. was supported by the IR&D program of The Aerospace Corporation
- …
