17 research outputs found
UV radiation enhanced oxygen vacancy formation caused by the PLD plasma plume
Pulsed Laser Deposition is a commonly used non-equilibrium physical deposition technique for the growth of complex oxide thin films. A wide range of parameters is known to influence the properties of the used samples and thin films, especially the oxygen-vacancy concentration. One parameter has up to this point been neglected due to the challenges of separating its influence from the influence of the impinging species during growth: the UV-radiation of the plasma plume. We here present experiments enabled by a specially designed holder to allow a separation of these two influences. The influence of the UV-irradiation during pulsed laser deposition on the formation of oxygen-vacancies is investigated for the perovskite model material SrTiO3. The carrier concentration of UV-irradiated samples is nearly constant with depth and time. By contrast samples not exposed to the radiation of the plume show a depth dependence and a decrease in concentration over time. We reveal an increase in Ti-vacancy–oxygen-vacancy-complexes for UV irradiated samples, consistent with the different carrier concentrations. We find a UV enhanced oxygen-vacancy incorporation rate as responsible mechanism. We provide a complete picture of another influence parameter to be considered during pulsed laser depositions and unravel the mechanism behind persistent-photo-conductivity in SrTiO3
Cutaneous malakoplakia: case report and review
Malakoplakia is a rare acquired disease that can affect many systems but is more common in the urogenital tract. Cutaneous malakoplakia is even rarer. It is far more frequent in immunodeficient patients. We report a case of cutaneous malakoplakia in a kidney transplant patient who had recently stopped receiving immunosuppressive therapy to illustrate a review of the relevant recent literature
Tuning the electronic effective mass in double-doped SrTiO3
We elucidate the relationship between effective mass and carrier concentration in an oxide semiconductor controlled by a double-doping mechanism. In this model oxide system, Sr1-xLaxTiO3-delta, we can tune the effective mass ranging from 6 to 20m(e) as a function of filling (carrier concentration) and the scattering mechanism, which are dependent on the chosen lanthanum-and oxygen-vacancy concentrations. The effective mass values were calculated from the Boltzmann transport equation using the measured transport properties of thin films of Sr1-xLaxTiO3-delta. We show that the effective mass decreases with carrier concentration in this large-band-gap, low-mobility oxide, and this behavior is contrary to the traditional high-mobility, small-effective-mass semiconductors
