453 research outputs found

    HIV-DNA Given with or without Intradermal Electroporation Is Safe and Highly Immunogenic in Healthy Swedish HIV-1 DNA/MVA Vaccinees: A Phase I Randomized Trial

    No full text
    We compared safety and immunogenicity of intradermal (ID) vaccination with and without electroporation (EP) in a phase I randomized placebo-controlled trial of an HIV-DNA prime HIV-MVA boost vaccine in healthy Swedish volunteers.HIV-DNA plasmids encoding HIV-1 genes gp160 subtypes A, B and C; Rev B; Gag A and B and RTmut B were given ID at weeks 0, 6 and 12 in a dose of 0.6 mg. Twenty-five volunteers received vaccine using a needle-free device (ZetaJet) with (n=16) or without (n=9) ID EP (Dermavax). Five volunteers were placebo recipients. Boosting with recombinant MVA-CMDR expressing HIV-1 Env, Gag, Pol of CRF01_AE (HIV-MVA) or placebo was performed at weeks 24 and 40. Nine of the vaccinees received a subtype C CN54 gp140 protein boost together with HIV-MVA.The ID/EP delivery was very well tolerated. After three HIV-DNA immunizations, no statistically significant difference was seen in the IFN-γ ELISpot response rate to Gag between HIV-DNA ID/EP recipients (5/15, 33%) and HIV-DNA ID recipients (1/7, 14%, p=0.6158). The first HIV-MVA or HIV-MVA+gp140 vaccination increased the IFN-γ ELISpot response rate to 18/19 (95%). CD4+ and/or CD8+ T cell responses to Gag or Env were demonstrable in 94% of vaccinees. A balanced CD4+ and CD8+ T cell response was noted, with 78% and 71% responders, respectively. IFN-γ and IL-2 dominated the CD4+ T cell response to Gag and Env. The CD8+ response to Gag was broader with expression of IFN-γ, IL-2, MIP-1β and/or CD107. No differences were seen between DNA vaccine groups. Binding antibodies were induced after the second HIV-MVA+/-gp140 in 93% of vaccinees to subtype C Env, with the highest titers among EP/gp140 recipients.Intradermal electroporation of HIV-DNA was well tolerated. Strong cell- and antibody-mediated immune responses were elicited by the HIV-DNA prime and HIV-MVA boosting regimen, with or without intradermal electroporation use.International Standard Randomised Controlled Trial Number (ISRCTN) 60284968

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Extending Epigenesis: From Phenotypic Plasticity to the Bio-Cultural Feedback

    Get PDF
    The paper aims at proposing an extended notion of epigenesis acknowledging an actual causal import to the phenotypic dimension for the evolutionary diversification of life forms. Section 1 offers introductory remarks on the issue of epigenesis contrasting it with ancient and modern preformationist views. In Section 2 we propose to intend epigenesis as a process of phenotypic formation and diversification a) dependent on environmental influences, b) independent of changes in the genomic nucleotide sequence, and c) occurring during the whole life span. Then, Section 3 focuses on phenotypic plasticity and offers an overview of basic properties (like robustness, modularity and degeneracy) that allows biological systems to be evolvable – i.e. to have the potentiality of producing phenotypic variation. Successively (Section 4), the emphasis is put on environmentally-induced modification in the regulation of gene expression giving rise to phenotypic variation and diversification. After some brief considerations on the debated issue of epigenetic inheritance (Section 5), the issue of culture (kept in the background of the preceding sections) is considered. The key point is that, in the case of humans and of the evolutionary history of the genus Homo at least, the environment is also, importantly, the cultural environment. Thus, Section 6 argues that a bio-cultural feedback should be acknowledged in the “epigenic” processes leading to phenotypic diversification and innovation in Homo evolution. Finally, Section 7 introduces the notion of “cultural neural reuse”, which refers to phenotypic/neural modifications induced by specific features of the cultural environment that are effective in human cultural evolution without involving genetic changes. Therefore, cultural neural reuse may be regarded as a key instance of the bio-cultural feedback and ultimately of the extended notion of epigenesis proposed in this work

    Design of a randomized controlled trial of physical training and cancer (Phys-Can) – the impact of exercise intensity on cancer related fatigue, quality of life and disease outcome

    Get PDF
    Background: Cancer-related fatigue is a common problem in persons with cancer, influencing health-related quality of life and causing a considerable challenge to society. Current evidence supports the beneficial effects of physical exercise in reducing fatigue, but the results across studies are not consistent, especially in terms of exercise intensity. It is also unclear whether use of behaviour change techniques can further increase exercise adherence and maintain physical activity behaviour. This study will investigate whether exercise intensity affects fatigue and health related quality of life in persons undergoing adjuvant cancer treatment. In addition, to examine effects of exercise intensity on mood disturbance, adherence to oncological treatment, adverse effects from treatment, activities of daily living after treatment completion and return to work, and behaviour change techniques effect on exercise adherence. We will also investigate whether exercise intensity influences inflammatory markers and cytokines, and whether gene expressions following training serve as mediators for the effects of exercise on fatigue and health related quality of life. Methods/design: Six hundred newly diagnosed persons with breast, colorectal or prostate cancer undergoing adjuvant therapy will be randomized in a 2 × 2 factorial design to following conditions; A) individually tailored low-to-moderate intensity exercise with or without behaviour change techniques or B) individually tailored high intensity exercise with or without behaviour change techniques. The training consists of both resistance and endurance exercise sessions under the guidance of trained coaches. The primary outcomes, fatigue and health related quality of life, are measured by self-reports. Secondary outcomes include fitness, mood disturbance, adherence to the cancer treatment, adverse effects, return to activities of daily living after completed treatment, return to work as well as inflammatory markers, cytokines and gene expression. Discussion: The study will contribute to our understanding of the value of exercise and exercise intensity in reducing fatigue and improving health related quality of life and, potentially, clinical outcomes. The value of behaviour change techniques in terms of adherence to and maintenance of physical exercise behaviour in persons with cancer will be evaluated

    Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England)

    Get PDF
    The apparent reduction of solitary and primitively eusocial bees populations has remained a huge concern over the past few decades and urbanisation is considered as one of the factors affecting bees at different scales depending on bee guild. As urbanisation is increasing globally it necessitates more research to understand the complex community dynamics of solitary and primitively eusocial bees in urban settings. We investigated the urban core of a British town for diversity and abundance of solitary bees using standardized methods, and compared the results with nearby meadows and nature reserves. The study recorded 48 species within the town, about 22 % of the total species and 58 % of the genera of solitary bees in the United Kingdom. Furthermore we found the urban core to be more diverse and abundant in solitary and primitively eusocial bees compared to the meadows and nature re-serves. Of particular note was an urban record of the nationally rare Red Data Book species Coelioxys quadridentata and its host Anthophora quadrimaculata. This research demonstrates that urban settings can contribute significantly to the conservation of solitary and primitively eusocial bees in Britain

    Coupling changes in cell shape to chromosome segregation

    Get PDF
    Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance

    Exacerbation of facial motoneuron loss after facial nerve axotomy in CCR3-deficient mice

    Get PDF
    We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron) survival after facial nerve axotomy that is dependent on CD4+ Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system)-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide) is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4+ Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type), a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3−/− mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2−/− (recombination activating gene-2-deficient) mice adoptively transferred CD4+ T-cells isolated from CCR3−/− mice, but not in CCR3−/− mice adoptively transferred CD4+ T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4+ T-cell- and CCR3-mediated neuroprotection after FMN injury

    High content live cell imaging for the discovery of new antimalarial marine natural products

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, <it>Plasmodium falciparum</it>.</p> <p>Methods</p> <p>A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown <it>in vitro </it>in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope.</p> <p>Results</p> <p>Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts.</p> <p>Conclusion</p> <p>Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.</p

    The Reinforcing Therapist Performance (RTP) experiment: Study protocol for a cluster randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rewarding provider performance has been recommended by the Institute of Medicine as an approach to improve the quality of treatment, yet little empirical research currently exists that has examined the effectiveness and cost-effectiveness of such approaches. The aim of this study is to test the effectiveness and cost-effectiveness of providing monetary incentives directly to therapists as a method to improve substance abuse treatment service delivery and subsequent client treatment outcomes.</p> <p>Design</p> <p>Using a cluster randomized design, substance abuse treatment therapists from across 29 sites were assigned by site to either an implementation as usual (IAU) or pay-for-performance (P4P) condition.</p> <p>Participants</p> <p>Substance abuse treatment therapists participating in a large dissemination and implementation initiative funded by the Center for Substance Abuse Treatment.</p> <p>Intervention</p> <p>Therapists in both conditions received comprehensive training and ongoing monitoring, coaching, and feedback. However, those in the P4P condition also were given the opportunity to earn monetary incentives for achieving two sets of measurable behaviors related to quality implementation of the treatment.</p> <p>Outcomes</p> <p>Effectiveness outcomes will focus on the impact of the monetary incentives to increase the proportion of adolescents who receive a targeted threshold level of treatment, months that therapists demonstrate monthly competency, and adolescents who are in recovery following treatment. Similarly, cost-effectiveness outcomes will focus on cost per adolescent receiving targeted threshold level of treatment, cost per month of demonstrated competence, and cost per adolescent in recovery.</p> <p>Trial Registration</p> <p>Trial Registration Number: NCT01016704</p

    ATP Release from Vascular Endothelia Occurs Across Cx43 Hemichannels and Is Attenuated during Hypoxia

    Get PDF
    Background: Extracellular ATP is an important signaling molecule for vascular adaptation to limited oxygen availability (hypoxia). Here, we pursued the contribution of vascular endothelia to extracellular ATP release under hypoxic conditions. Methodology, Principal Findings: We gained first insight from studying ATP release from endothelia (HMEC-1) pre-exposed to hypoxia. Surprisingly, we found that ATP release was significantly attenuated following hypoxia exposure (2 % oxygen, 2263 % after 48 h). In contrast, intracellular ATP was unchanged. Similarly, lactate-dehydrogenase release into the supernatants was similar between normoxic or hypoxic endothelia, suggesting that differences in lytic ATP release between normoxia or hypoxia are minimal. Next, we used pharmacological strategies to study potential mechanisms for endothelialdependent ATP release (eg, verapamil, dipyridamole, 18-alpha-glycyrrhetinic acid, anandamide, connexin-mimetic peptides). These studies revealed that endothelial ATP release occurs – at least in part- through connexin 43 (Cx43) hemichannels. A real-time RT-PCR screen of endothelial connexin expression showed selective repression of Cx43 transcript and additional studies confirmed time-dependent Cx43 mRNA, total and surface protein repression during hypoxia. In addition, hypoxia resulted in Cx43-serine368 phosphorylation, which is known to switch Cx43 hemi-channels from an open to a closed state. Conclusions/Significance: Taken together, these studies implicate endothelial Cx43 in hypoxia-associated repression o
    corecore