80 research outputs found

    The Classic: Bone Morphogenetic Protein

    Get PDF
    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is © 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392–1406

    The controversy of patellar resurfacing in total knee arthroplasty: Ibisne in medio tutissimus?

    Get PDF
    Early arthroplasty designs were associated with a high level of anterior knee pain as they failed to cater for the patello-femoral joint. Patellar resurfacing was heralded as the saviour safeguarding patient satisfaction and success but opinion on its necessity has since deeply divided the scientific community and has become synonymous to topics of religion or politics. Opponents of resurfacing contend that the native patella provides better patellar tracking, improved clinical function, and avoids implant-related complications, whilst proponents argue that patients have less pain, are overall more satisfied, and avert the need for secondary resurfacing. The question remains whether complications associated with patellar resurfacing including those arising from future component revision outweigh the somewhat increased incidence of anterior knee pain recorded in unresurfaced patients. The current scientific literature, which is often affected by methodological limitations and observer bias, remains confusing as it provides evidence in support of both sides of the argument, whilst blinded satisfaction studies comparing resurfaced and non-resurfaced knees generally reveal equivalent results. Even national arthroplasty register data show wide variations in the proportion of patellar resurfacing between countries that cannot be explained by cultural differences alone. Advocates who always resurface or never resurface indiscriminately expose the patella to a random choice. Selective resurfacing offers a compromise by providing a decision algorithm based on a propensity for improved clinical success, whilst avoiding potential complications associated with unnecessary resurfacing. Evidence regarding the validity of selection criteria, however, is missing, and the decision when to resurface is often based on intuitive reasoning. Our lack of understanding why, irrespective of pre-operative symptoms and patellar resurfacing, some patients may suffer pain following TKA and others may not have so far stifled our efforts to make the strategy of selective resurfacing succeed. We should hence devote our efforts in defining predictive criteria and indicators that will enable us to reliably identify those individuals who might benefit from a resurfacing procedure. Level of evidence V

    An integrated encyclopedia of DNA elements in the human genome

    Get PDF
    The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure, and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall the project provides new insights into the organization and regulation of our genes and genome, and an expansive resource of functional annotations for biomedical research

    LAMININ EXTRACTION AND DISORGANIZATION OF COLLAGEN FIBRILS IN SNAIL MUSCLES BY EDTA TREATMENT

    No full text
    International audiencexx

    LAMININ EXTRACTION AND DISORGANIZATION OF COLLAGEN FIBRILS IN SNAIL MUSCLES BY EDTA TREATMENT

    No full text
    International audiencexx

    Temporal and spatial analysis of cartilage proteoglycan core protein gene expression during limb development by in situ hybridization.

    No full text
    International audienceAs limb mesenchymal cells differentiate into chondrocytes they initiate the synthesis of a cartilage-specific sulfated proteoglycan, cartilage-characteristic type II collagen, and other cartilage-specific proteins. In the present study, in situ hybridization with a 32P-labeled cloned cDNA probe complementary to mRNA encoding the core protein of cartilage proteoglycan has been used to visualize and localize the accumulation of cartilage proteoglycan core protein mRNA sequences during development of the chick limb bud in vivo. When the probe was hybridized to sections through 7-day (stage 32) limbs, an intense hybridization signal was observed over the well-differentiated cartilage rudiments of the limb, while no signal above background was observed over nonchondrogenic tissues including muscle, loose connective tissue, and epidermis. At early stages of limb development, an accumulation of silver grains representing hybridizable core protein mRNA first became detectable in the proximal central core of the limb where the prechondrogenic condensation of mesenchymal cells that characterizes the onset of cartilage differentiation was occurring. In fact, the pattern of silver grain accumulation closely followed the pattern of mesenchymal cell condensation, and no hybridizable core protein mRNA sequences were detectable in the limb bud prior to condensation. Cartilage-characteristic type II collagen mRNA was colocalized with core protein mRNA in the condensing central core of the limb suggesting that the genes for these two major constituents of cartilage matrix are coordinately regulated at the onset of chondrogenesis. Furthermore, the appearance of hybridizable core protein mRNA was closely followed by the appearance of the protein for which it codes as detected by immunohistochemical staining with monospecific antibody. These observations support the hypothesis that at the initial stages of limb chondrogenesis core protein gene expression is controlled primarily at the transcriptional level.As limb mesenchymal cells differentiate into chondrocytes they initiate the synthesis of a cartilage-specific sulfated proteoglycan, cartilage-characteristic type II collagen, and other cartilage-specific proteins. In the present study, in situ hybridization with a 32P-labeled cloned cDNA probe complementary to mRNA encoding the core protein of cartilage proteoglycan has been used to visualize and localize the accumulation of cartilage proteoglycan core protein mRNA sequences during development of the chick limb bud in vivo. When the probe was hybridized to sections through 7-day (stage 32) limbs, an intense hybridization signal was observed over the well-differentiated cartilage rudiments of the limb, while no signal above background was observed over nonchondrogenic tissues including muscle, loose connective tissue, and epidermis. At early stages of limb development, an accumulation of silver grains representing hybridizable core protein mRNA first became detectable in the proximal central core of the limb where the prechondrogenic condensation of mesenchymal cells that characterizes the onset of cartilage differentiation was occurring. In fact, the pattern of silver grain accumulation closely followed the pattern of mesenchymal cell condensation, and no hybridizable core protein mRNA sequences were detectable in the limb bud prior to condensation. Cartilage-characteristic type II collagen mRNA was colocalized with core protein mRNA in the condensing central core of the limb suggesting that the genes for these two major constituents of cartilage matrix are coordinately regulated at the onset of chondrogenesis. Furthermore, the appearance of hybridizable core protein mRNA was closely followed by the appearance of the protein for which it codes as detected by immunohistochemical staining with monospecific antibody. These observations support the hypothesis that at the initial stages of limb chondrogenesis core protein gene expression is controlled primarily at the transcriptional level

    Collagen Structure and Calcification

    No full text
    corecore