3,897 research outputs found

    The nested dirichlet distribution and incomplete categorical data analysis

    Get PDF
    The nested Dirichlet distribution (NDD) is an important distribution defined on the closed n-dimensional simplex. It includes the classical Dirichlet distribution and is useful in incomplete categorical data (ICD) analysis. In this article, we develop the distributional properties of NDD. New large-sample likelihood and small-sample Bayesian approaches for analyzing ICD are proposed and compared with existing likelihood/Bayesian strategies. We show that the new approaches have at least three advantages over existing approaches based on the traditional Dirichlet distribution in both frequentist and conjugate Bayesian inference for ICD. The new methods possess closed-form expressions for both the maximum likelihood and Bayes estimates when the likelihood function is in NDD form; produce computationally efficient EM and data augmentation algorithms when the likelihood is not in NDD form; and provide exact sampling procedures for some special cases. The methodologies are illustrated with simulated and real data.published_or_final_versio

    Further properties and new applications of the nested Dirichlet distribution

    Get PDF
    Recently, Ng et al. (2009) studied a new family of distributions, namely the nested Dirichlet distributions. This family includes the traditional Dirichlet distribution as a special member and can be adopted to analyze incomplete categorical data. However, other important aspects of the family, such as marginal and conditional distributions and related properties are not yet available in the literature. Moreover, diverse applications of the family to the real world need to be further explored. In this paper, we first obtain the marginal and conditional distributions and other related properties of the nested Dirichlet distribution. We then present new applications of the family in fitting competing-risks model, analyzing incomplete categorical data and evaluating cancer diagnosis tests. Three real data involving failure times of radio transmitter receivers, attitude toward the death penalty and ultrasound ratings for breast cancer metastasis are provided. © 2009 Elsevier B.V. All rights reserved.postprin

    The absolute position of a resonance peak

    Get PDF
    It is common practice in scattering theory to correlate between the position of a resonance peak in the cross section and the real part of a complex energy of a pole of the scattering amplitude. In this work we show that the resonance peak position appears at the absolute value of the pole's complex energy rather than its real part. We further demonstrate that a local theory of resonances can still be used even in cases previously thought impossible

    Confidence-interval construction for rate ratio in matched-pair studies with incomplete data

    Get PDF
    Matched-pair design is often used in clinical trials to increase the efficiency of establishing equivalence between two treatments with binary outcomes. In this article, we consider such a design based on rate ratio in the presence of incomplete data. The rate ratio is one of the most frequently used indices in comparing efficiency of two treatments in clinical trials. In this article, we propose 10 confidence-interval estimators for the rate ratio in incomplete matched-pair designs. A hybrid method that recovers variance estimates required for the rate ratio from the confidence limits for single proportions is proposed. It is noteworthy that confidence intervals based on this hybrid method have closed-form solution. The performance of the proposed confidence intervals is evaluated with respect to their exact coverage probability, expected confidence interval width, and distal and mesial noncoverage probability. The results show that the hybrid Agresti–Coull confidence interval based on Fieller’s theorem performs satisfactorily for small to moderate sample sizes. Two real examples from clinical trials are used to illustrate the proposed confidence intervals.postprin

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure

    A critical evaluation of network and pathway based classifiers for outcome prediction in breast cancer

    Get PDF
    Recently, several classifiers that combine primary tumor data, like gene expression data, and secondary data sources, such as protein-protein interaction networks, have been proposed for predicting outcome in breast cancer. In these approaches, new composite features are typically constructed by aggregating the expression levels of several genes. The secondary data sources are employed to guide this aggregation. Although many studies claim that these approaches improve classification performance over single gene classifiers, the gain in performance is difficult to assess. This stems mainly from the fact that different breast cancer data sets and validation procedures are employed to assess the performance. Here we address these issues by employing a large cohort of six breast cancer data sets as benchmark set and by performing an unbiased evaluation of the classification accuracies of the different approaches. Contrary to previous claims, we find that composite feature classifiers do not outperform simple single gene classifiers. We investigate the effect of (1) the number of selected features; (2) the specific gene set from which features are selected; (3) the size of the training set and (4) the heterogeneity of the data set on the performance of composite feature and single gene classifiers. Strikingly, we find that randomization of secondary data sources, which destroys all biological information in these sources, does not result in a deterioration in performance of composite feature classifiers. Finally, we show that when a proper correction for gene set size is performed, the stability of single gene sets is similar to the stability of composite feature sets. Based on these results there is currently no reason to prefer prognostic classifiers based on composite features over single gene classifiers for predicting outcome in breast cancer

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    Get PDF
    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and healthmonitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to similar to 3MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.ope

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
    corecore