40 research outputs found

    Cutaneous lesions of the nose

    Get PDF
    Skin diseases on the nose are seen in a variety of medical disciplines. Dermatologists, otorhinolaryngologists, general practitioners and general plastic and dermatologic surgeons are regularly consulted regarding cutaneous lesions on the nose. This article is the second part of a review series dealing with cutaneous lesions on the head and face, which are frequently seen in daily practice by a dermatologic surgeon. In this review, we focus on those skin diseases on the nose where surgery or laser therapy is considered a possible treatment option or that can be surgically evaluated

    Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals

    Get PDF
    peer-reviewedH.D.D., A.J.C., P.J.B. and B.J.H. would like to acknowledge the Dairy Futures Cooperative Research Centre for funding. H.P. and R.F. acknowledge funding from the German Federal Ministry of Education and Research (BMBF) within the AgroClustEr ‘Synbreed—Synergistic Plant and Animal Breeding’ (grant 0315527B). H.P., R.F., R.E. and K.-U.G. acknowledge the Arbeitsgemeinschaft Süddeutscher Rinderzüchter, the Arbeitsgemeinschaft Österreichischer Fleckviehzüchter and ZuchtData EDV Dienstleistungen for providing genotype data. A. Bagnato acknowledges the European Union (EU) Collaborative Project LowInputBreeds (grant agreement 222623) for providing Brown Swiss genotypes. Braunvieh Schweiz is acknowledged for providing Brown Swiss phenotypes. H.P. and R.F. acknowledge the German Holstein Association (DHV) and the Confederación de Asociaciones de Frisona Española (CONCAFE) for sharing genotype data. H.P. was financially supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (DFG) (grant PA 2789/1-1). D.B. and D.C.P. acknowledge funding from the Research Stimulus Fund (11/S/112) and Science Foundation Ireland (14/IA/2576). M.S. and F.S.S. acknowledge the Canadian Dairy Network (CDN) for providing the Holstein genotypes. P.S. acknowledges funding from the Genome Canada project entitled ‘Whole Genome Selection through Genome Wide Imputation in Beef Cattle’ and acknowledges WestGrid and Compute/Calcul Canada for providing computing resources. J.F.T. was supported by the National Institute of Food and Agriculture, US Department of Agriculture, under awards 2013-68004-20364 and 2015-67015-23183. A. Bagnato, F.P., M.D. and J.W. acknowledge EU Collaborative Project Quantomics (grant 516 agreement 222664) for providing Brown Swiss and Finnish Ayrshire sequences and genotypes. A.C.B. and R.F.V. acknowledge funding from the public–private partnership ‘Breed4Food’ (code BO-22.04-011- 001-ASG-LR) and EU FP7 IRSES SEQSEL (grant 317697). A.C.B. and R.F.V. acknowledge CRV (Arnhem, the Netherlands) for providing data on Dutch and New Zealand Holstein and Jersey bulls.Stature is affected by many polymorphisms of small effect in humans1. In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10−8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP–seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals

    Characterization of an unusual thyroid response unit in the promoter of the human placental lactogen gene

    No full text
    peer reviewedThe human placental lactogen B (hCS-B) promoter activity is strongly stimulated by thyroid hormones in the rat pituitary GC cell line. The minimal DNA sequence required for stimulation, as determined by transfection with 5' and 3' deletion mutants, spans 67 base pairs, from coordinate -97 to -31. DNase I footprinting experiments show that this thyroid response unit includes two adjacent binding sites: one for the thyroid receptor (-67/-41), the other for the pituitary-specific factor GHF1 (-95/-68). Neither region alone is sufficient to confer thyroid responsiveness. The thyroid receptor binding element (TBE) does not contain any repeats or palindromes but is composed of two different domains, one of which is very similar to the half-palindromic motif described by Glass et al. (Glass, C.K., Holloway, J.M., Devary, O.L., and Rosenfeld, M.G. (1988) Cell 54, 313-323). The other is very rich in purine. The normal human growth hormone (hGH-N) promoter, which is 94% similar to the hCS-B promoter, differs from its hCS-B counterpart precisely in this TBE. This difference may explain the opposite 3,5,3'-triiodothyronine (T3) regulation of these two genes

    Transcriptional regulation by triiodothyronine requires synergistic action of the thyroid receptor with another trans-acting factor.

    No full text
    peer reviewedHuman placental lactogen B (hCS-B) promoter activity is strongly stimulated by triiodothyronine (T3) in pituitary GC cells through interaction between the thyroid receptor and a thyroid receptor-binding element (TBE) spanning coordinates -67 to -41. This TBE is adjacent to the binding site for pituitary factor GHF1 (-95 to -68) which seems necessary for T3 stimulation of hCS-B promoter activity (M. L. Voz, B. Peers, A. Belayew, and J. A. Martial, J. Biol. Chem. 266:13397-13404, 1991). We here demonstrate actual synergy between the thyroid receptor and GHF1. Indeed, in placental JEG-3 cells devoid of factor GHF1, hCS promoter activity is barely stimulated by T3, while a strong response is observed in pituitary GC cells. In the latter, furthermore, neither the TBE nor the GHF1-binding site alone is sufficient to render the thymidine kinase promoter responsive to T3, while in combination they promote strong T3 stimulation. Close proximity between these sites is required for optimal synergy: T3 stimulation globally decreases with increased spacing. Furthermore, synergy occurs not only with a GHF1-binding site but also with all other factor recognition sequences tested (Spl, NF1, CP1, Octl, and CACCC boxes) and even with two other copies of the TBE. Nor is it specific to hCS TBE, since the palindromic sequence TCAGGTCA TGACCTGA (TREpal) also exhibits cooperativity

    Binding of a 100-kDa ubiquitous factor to the human prolactin promoter is required for its basal and hormone-regulated activity.

    No full text
    peer reviewedcAMP strongly stimulates the activity of the human prolactin (hPRL) promoter. We have previously shown that two types of cis-element are required for this cAMP regulation; binding sites for the pituitary-specific factor Pit-1, and the sequence spanning nucleotides -115 to -85 (named sequence A). Sequence A contains the TGACG motif found in the consensus sequence of the cAMP-responsive element (CRE). In this study, we show that a mutation in the TGACG motif of sequence A strongly reduces not only the cAMP regulation but also the Ca2+ regulation and basal activity of the hPRL promoter. Furthermore, gel-shift assays indicate that the mutation prevents binding of a ubiquitous factor which is not the CRE-binding protein. Southwestern experiments suggest that this ubiquitous factor's molecular mass is approximately 100 kDa. We conclude that binding of a 100-kDa ubiquitous factor to sequence A is required for full basal and hormonal regulation of hPRL-promoter activity

    Transcriptional induction of the human prolactin gene by cAMP requires two cis-acting elements and at least the pituitary-specific factor Pit-1

    No full text
    peer reviewedTo identify the cis-acting elements responsible for cAMP stimulation of human prolactin (hPRL) promoter activity, pituitary GC cells were transfected with 5'-deleted hPRL promoters fused to the chloramphenicol acetyltransferase reporter gene. The proximal regulatory region (coordinates -250 to -42) was sufficient to confer strong cAMP stimulation (+/- 25 fold). Further 5' and 3' deletions performed within this proximal region demonstrated that two types of cis-acting elements are involved in the cAMP regulation: (i) the binding sites of the pituitary-specific factor Pit-1, and (ii) the sequence between coordinates -115 and -85 (named fragment A), which contains a TGACG motif. We show by gel-shift and Southwestern experiments that fragment A binds Pit-1 monomer and also a ubiquitous factor that is neither cAMP-responsive element-binding protein nor activator protein-1. Strong cAMP induction was observed when fragment A was juxtaposed to a Pit-1 binding site. That Pit-1 plays an important role was supported further by the finding that the hPRL proximal region conferred cAMP regulation when linked to the herpes simplex virus thymidine kinase promoter only in pituitary GC cells and not in other heterologous cells, which do not express Pit-1. Furthermore, we observed that concatenated Pit-1 binding sites were able to confer cAMP responsiveness to the thymidine kinase promoter in GC cells

    Regulatory elements controlling pituitary-specific expression of the human prolactin gene

    No full text
    peer reviewedWe have performed transfection and DNase I footprinting experiments to investigate pituitary-specific expression of the human prolactin (hPRL) gene. When fused to the chloramphenicol acetyltransferase (CAT) reporter gene, 5,000 base pairs of the 5'-flanking sequences of the hPRL gene were able to drive high cat gene expression in prolactin-expressing GH3B6 cells specifically. Deletion analysis indicated that this pituitaryspecific expression was controlled by three main positive regulatory regions. The first was located just upstream from the TATA box between coordinates -40 and -250 (proximal region). We have previously shown that three motifs of this region bind the pituitary-specific Pit-l factor. The second positive region was located in the vicinity of coordinates -1300 to -1750 (distal region). DNase I footprinting assays revealed that eight DNA motifs of this distal region bound protein Pit-l and that two other motifs were recognized by ubiquitous factors, one of which seems to belong to the AP-1 (jun) family. The third positive region was located further upstream, between -3500 and -5000 (superdistal region). This region appears to enhance transcription only in the presence of the distal region

    Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes

    No full text
    peer reviewedThe intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions

    Histologic localization of PLAG1 (pleomorphic adenoma gene 1) in pleomorphic adenoma of the salivary gland: cytogenetic evidence of common origin of phenotypically diverse cells.

    Full text link
    Pleomorphic adenoma gene 1 (PLAG1), a zinc finger transcription factor gene, is consistently rearranged and overexpressed in human pleomorphic adenomas of the salivary glands with 8q12 translocations. In this report, we describe the immunohistochemical localization of PLAG1 protein in pleomorphic adenomas of the salivary gland and corresponding normal tissue, in relation to cytokeratin, vimentin, and BCL-2 expression. Normal salivary gland tissue was not immunoreactive for PLAG1. In primary pleomorphic adenomas, cells strongly immunoreactive for PLAG1 were detected in the outer layer of tubulo-ductal structures, which are thought to be the origin of cells with bi-directional, epithelial, and mesenchymal phenotypes. In contrast, epithelial cells with abundant cytokeratin in the inner tubulo-ductal structures only sporadically expressed PLAG1. BCL-2 immunoreactivity was found mainly in the cells surrounding the tubulo-ductal structures and in the solid undifferentiated cellular masses, within the areas that had moderate PLAG1 immunoreactivity. The variability of PLAG1 expression in neoplastic cells seemed to reflect the morphologic heterogeneity that correlated with the stage of differentiation of the tumor cells. Immunohistochemical/cytogenetic evaluation of two pleomorphic adenomas with t(3;8)(p21;q12) or t(5;8)(p13;q12) translocations demonstrated the clonal nature of immunophenotypically diverse cells. This finding confirms the theory that pleomorphic adenoma cells share a common single-cell origin, most likely from the epithelial progenitor basal duct cells
    corecore