180 research outputs found
Effect of invader removal: pollinators stay but some native plants miss their new friend
Removal of invasive species often benefits
biological diversity allowing ecosystems’ recovery.
However, it is important to assess the functional roles
that invaders may have established in their new areas
to avoid unexpected results from species elimination.
Invasive animal-pollinated plants may affect the
plant–pollination interactions by changing pollinator
availability and/or behaviour in the community. Thus,
removal of an invasive plant may have important
effects on pollinator community that may then be
reflected positive or negatively on the reproductive
success of native plants. The objective of this study
was to assess the effect of removing Oxalis pescaprae,
an invasive weed widely spread in the
Mediterranean basin, on plant–pollinator interactions
and on the reproductive success of co-flowering native
plants. For this, a disturbed area in central Portugal,
where this species is highly abundant, was selected.
Visitation rates, natural pollen loads, pollen tube
growth and natural fruit set of native plants were
compared in the presence of O. pes-caprae and after
manual removal of their flowers. Our results showed a
highly resilient pollination network but also revealed
some facilitative effects of O. pes-caprae on the
reproductive success of co-flowering native plants.
Reproductive success of the native plants seems to
depend not only on the number and diversity of floral
visitors, but also on their efficiency as pollinators. The
information provided on the effects of invasive species
on the sexual reproductive success of natives is
essential for adequate management of invaded areas.This work is financed by FEDER funds through the
COMPETE Program and by Portuguese Foundation for Science
and Technology (FCT) funds in the ambit of the project PTDC/
BIA-BIC/110824/2009, by CRUP Acc¸o˜es Integradas Luso-
Espanholas 2010 with the project E10/10, by MCI-Programa de
Internacionalizacio´n de la I ? D (PT2009-0068) and by the
Spanish DGICYT (CGL2009-10466), FEDER funds from the
European Union, and the Xunta de Galicia (INCITE09-
3103009PR). FCT also supported the work of S. Castro (FCT/
BPD/41200/2007) and J. Costa (CB/C05/2009/209; PTDC/
BIA-BIC/110824/2009). The work of V. Ferrero was supported
by the Fundacio´n Ramo´n Areces
Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running
BACKGROUND: Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. METHODS: We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. RESULTS: We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. CONCLUSIONS: Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described
Metabolic responses to the acute ingestion of two commercially available carbonated beverages: A pilot study
<p>Abstract</p> <p>Background</p> <p>The purpose of this placebo-controlled, double-blind cross-over study was to compare the effects of two commercially available soft drinks on metabolic rate.</p> <p>Methods</p> <p>After giving informed consent, twenty healthy men and women were randomly assigned to ingest 12 ounces of Celsius™ and, on a separate day, 12 ounces of Diet Coke®. All subjects completed both trials using a randomized, counterbalanced design. Metabolic rate (via indirect calorimetry) and substrate oxidation (via respiratory exchange ratio) were measured at baseline (pre-ingestion) and at the end of each hour for 3 hours post-ingestion.</p> <p>Results</p> <p>Two-way ANOVA revealed a significant interaction (p < 0.001) between trials in metabolic rate. Scheffe post-hoc testing indicated that metabolic rate increased by 13.8% (+ 0.6 L/min, p < 0.001) 1 hr post, 14.4% (+0.63 L/min, p < 0.001) 2 hr post, and 8.5% (+0.37 L/min, p < 0.004) 3 hr post Celsius™ ingestion. In contrast, small (~4–6%) but statistically insignificant increases in metabolic rate were noted following Diet Coke<sup>® </sup>ingestion. No differences in respiratory exchange ratio were noted between trials.</p> <p>Conclusion</p> <p>These preliminary findings indicate Celsius™ has thermogenic properties when ingested acutely. The effects of repeated, chronic ingestion of Celsius™ on body composition are unknown at this time.</p
Orthogonality, Lommel integrals and cross product zeros of linear combinations of Bessel functions
Obesity prevention in child care: A review of U.S. state regulations
<p>ABSTRACT</p> <p>Objective</p> <p>To describe and contrast individual state nutrition and physical activity regulations related to childhood obesity for child care centers and family child care homes in the United States.</p> <p>Methods</p> <p>We conducted a review of regulations for child care facilities for all 50 states and the District of Columbia. We examined state regulations and recorded key nutrition and physical activity items that may contribute to childhood obesity. Items included in this review were: 1) Water is freely available; 2) Sugar-sweetened beverages are limited; 3) Foods of low nutritional value are limited; 4) Children are not forced to eat; 5) Food is not used as a reward; 6) Support is provided for breastfeeding and provision of breast milk; 7) Screen time is limited; and 8) Physical activity is required daily.</p> <p>Results</p> <p>Considerable variation exists among state nutrition and physical activity regulations related to obesity. Tennessee had six of the eight regulations for child care centers, and Delaware, Georgia, Indiana, and Nevada had five of the eight regulations. Conversely, the District of Columbia, Idaho, Nebraska and Washington had none of the eight regulations. For family child care homes, Georgia and Nevada had five of the eight regulations; Arizona, Mississippi, North Carolina, Oregon, Tennessee, Texas, Vermont, and West Virginia had four of the eight regulations. California, the District of Columbia, Idaho, Iowa, Kansas, and Nebraska did not have any of the regulations related to obesity for family child care homes.</p> <p>Conclusion</p> <p>Many states lack specific nutrition and physical activity regulations related to childhood obesity for child care facilities. If widely implemented, enhancing state regulations could help address the obesity epidemic in young children in the United States.</p
Unpredictability of metabolism—the key role of metabolomics science in combination with next-generation genome sequencing
Next-generation sequencing provides technologies which sequence whole prokaryotic and eukaryotic genomes in days, perform genome-wide association studies, chromatin immunoprecipitation followed by sequencing and RNA sequencing for transcriptome studies. An exponentially growing volume of sequence data can be anticipated, yet functional interpretation does not keep pace with the amount of data produced. In principle, these data contain all the secrets of living systems, the genotype–phenotype relationship. Firstly, it is possible to derive the structure and connectivity of the metabolic network from the genotype of an organism in the form of the stoichiometric matrix N. This is, however, static information. Strategies for genome-scale measurement, modelling and predicting of dynamic metabolic networks need to be applied. Consequently, metabolomics science—the quantitative measurement of metabolism in conjunction with metabolic modelling—is a key discipline for the functional interpretation of whole genomes and especially for testing the numerical predictions of metabolism based on genome-scale metabolic network models. In this context, a systematic equation is derived based on metabolomics covariance data and the genome-scale stoichiometric matrix which describes the genotype–phenotype relationship
Comparative Structural Analysis of Human DEAD-Box RNA Helicases
DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members
Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future
Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95% CI 13.6%–21.5%) in those aged ≥85 years; for late AMD these figures were 0.1% (95% CI 0.04%–0.3%) and 9.8% (95% CI 6.3%–13.3%), respectively. We observed a decreasing prevalence of late AMD after 2006, which became most prominent after age 70. Prevalences were similar for gender across all age groups except for late AMD in the oldest age category, and a trend was found showing a higher prevalence of CNV in Northern Europe. After 2006, fewer eyes and fewer ≥80-year-old subjects with CNV were visually impaired (P = 0.016). Projections of AMD showed an almost doubling of affected persons despite a decreasing prevalence. By 2040, the number of individuals in Europe with early AMD will range between 14.9 and 21.5 million, and for late AMD between 3.9 and 4.8 million. Conclusion We observed a decreasing prevalence of AMD and an improvement in visual acuity in CNV occuring over the past 2 decades in Europe. Healthier lifestyles and implementation of anti–vascular endothelial growth factor treatment are the most likely explanations. Nevertheless, the numbers of affected subjects will increase considerably in the next 2 decades. AMD continues to remain a significant public health problem among Europeans
The Decreasing Prevalence of Nonrefractive Visual Impairment in Older Europeans: A Meta-analysis of Published and Unpublished Data
TOPIC: To estimate the prevalence of nonrefractive visual impairment and blindness in European persons 55 years of age and older. CLINICAL RELEVANCE: Few visual impairment and blindness prevalence estimates are available for the European population. In addition, many of the data collected in European population-based studies currently are unpublished and have not been included in previous estimates. METHODS: Fourteen European population-based studies participating in the European Eye Epidemiology Consortium (n = 70 723) were included. Each study provided nonrefractive visual impairment and blindness prevalence estimates stratified by age (10-year strata) and gender. Nonrefractive visual impairment and blindness were defined as best-corrected visual acuity worse than 20/60 and 20/400 in the better eye, respectively. Using random effects meta-analysis, prevalence rates were estimated according to age, gender, geographical area, and period (1991-2006 and 2007-2012). Because no data were available for Central and Eastern Europe, population projections for numbers of affected people were estimated using Eurostat population estimates for European high-income countries in 2000 and 2010. RESULTS: The age-standardized prevalence of nonrefractive visual impairment in people 55 years of age or older decreased from 2.22% (95% confidence interval [CI], 1.34-3.10) from 1991 through 2006 to 0.92% (95% CI, 0.42-1.42) from 2007 through 2012. It strongly increased with age in both periods (up to 15.69% and 4.39% in participants 85 years of age or older from 1991 through 2006 and from 2007 through 2012, respectively). Age-standardized prevalence of visual impairment tended to be higher in women than men from 1991 through 2006 (2.67% vs. 1.88%), but not from 2007 through 2012 (0.87% vs. 0.88%). No differences were observed between northern, western, and southern regions of Europe. The projected numbers of affected older inhabitants in European high-income countries decreased from 2.5 million affected individuals in 2000 to 1.2 million in 2010. Of those, 584 000 were blind in 2000, in comparison with 170 000 who were blind in 2010. CONCLUSIONS: Despite the increase in the European older population, our study indicated that the number of visually impaired people has decreased in European high-income countries in the last 20 years. This may be the result of major improvements in eye care and prevention, the decreasing prevalence of eye diseases, or both
Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models
New treatments for bone diseases require testing in animal models before clinical translation, and the mouse tibia is among the most common models. In vivo micro-Computed Tomography (microCT)-based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experimental data. Different modelling techniques can be used to estimate the bone properties, and the accuracy associated with each is unclear. The aim of this study was to evaluate the ability of different microCT-based microFE models to predict the mechanical properties of the mouse tibia under compressive load. Twenty tibiae were microCT scanned at 10.4 µm voxel size and subsequently compressed at 0.03 mm/s until failure. Stiffness and failure load were measured from the load–displacement curves. Different microFE models were generated from each microCT image, with hexahedral or tetrahedral mesh, and homogeneous or heterogeneous material properties. Prediction accuracy was comparable among models. The best correlations between experimental and predicted mechanical properties, as well as lower errors, were obtained for hexahedral models with homogeneous material properties. Experimental stiffness and predicted stiffness were reasonably well correlated (R2 = 0.53–0.65, average error of 13–17%). A lower correlation was found for failure load (R2 = 0.21–0.48, average error of 9–15%). Experimental and predicted mechanical properties normalized by the total bone mass were strongly correlated (R2 = 0.75–0.80 for stiffness, R2 = 0.55–0.81 for failure load). In conclusion, hexahedral models with homogeneous material properties based on in vivo microCT images were shown to best predict the mechanical properties of the mouse tibia
- …
