78 research outputs found
Towards a three-dimensional microfluidic liver platform for predicting drug efficacy and toxicity in humans
Although the process of drug development requires efficacy and toxicity testing in animals prior to human testing, animal models have limited ability to accurately predict human responses to xenobiotics and other insults. Societal pressures are also focusing on reduction of and, ultimately, replacement of animal testing. However, a variety of in vitro models, explored over the last decade, have not been powerful enough to replace animal models. New initiatives sponsored by several US federal agencies seek to address this problem by funding the development of physiologically relevant human organ models on microscopic chips. The eventual goal is to simulate a human-on-a-chip, by interconnecting the organ models, thereby replacing animal testing in drug discovery and development. As part of this initiative, we aim to build a three-dimensional human liver chip that mimics the acinus, the smallest functional unit of the liver, including its oxygen gradient. Our liver-on-a-chip platform will deliver a microfluidic three-dimensional co-culture environment with stable synthetic and enzymatic function for at least 4 weeks. Sentinel cells that contain fluorescent biosensors will be integrated into the chip to provide multiplexed, real-time readouts of key liver functions and pathology. We are also developing a database to manage experimental data and harness external information to interpret the multimodal data and create a predictive platform. © 2013 BioMed Central Ltd
N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes
Design Constraints on a Synthetic Metabolism
A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design
Sound-Producing Voice Prostheses: 150 Years of Research
Advanced laryngeal cancer sometimes necessitates the removal of the complete larynx. This procedure involves suturing the trachea to an opening in the neck, the most disturbing consequence of which is the loss of voice. Since 1859, several devices have been developed for voice restoration, based mainly on a vibrating reed element. However, the resulting sound is very monotonous and thus unpleasant. Presently the most successful way of voice restoration is the placement of a one-way shunt valve in the tracheoesophageal wall, thus preventing aspiration and allowing air to flow from the lungs to the esophagus, where soft tissues start to vibrate for substitute voicing. However, the quality of this voice is often poor. New artificial vocal folds to be placed within the shunt valve have been developed, and a membrane-principle concept appears very promising, owing to the self-cleaning construction and the high voice quality. Future developments will include electronic voice sources. Hopefully these developments will result in a high-quality voice, after 150 years of research
Microchannel bioreactors for bioartificial liver support
An extracorporeal bioartificial liver (BAL) device containing viable hepatocytes has the potential to provide temporary hepatic support to liver failure patients, serving as a bridge to transplantation while awaiting a suitable donor. In some patients, providing temporary hepatic support may be sufficient to allow adequate regeneration of the host liver, thereby eliminating the need for a liver transplant. Although the BAL device is a promising technology for the treatment of liver failure, there are several technical challenges that must be overcome in order to develop systems with sufficient processing capacity and of manageable size. In this study, the authors describe the critical issues involved in developing a BAL device. They also discuss their experiences in hepatocyte culture optimization within the context of a microchannel flat-plate BAL device.X1176sciescopu
Microfabricated grooved substrates as platforms for bioartificial liver reactors
An extracorporeal bioartificial liver device has the potential to provide temporary hepatic support for patients with liver failure. Our goal was to optimize the flow environment for the cultured hepatocytes in a flat-plate bioreactor, specifically focusing on oxygen delivery using high medium flow rates while reducing the detrimental effects of the resulting shear stresses. We used photolithographic techniques to fabricate microgrooves onto the underlying glass substrate. The microgrooves, perpendicular to the axial flow direction, protected the hepatocytes from the shear stress induced by the flowing medium. Using finite element analysis, we found that the velocity gradient change near the cell surface (i.e., bottom of the grooves) was smaller than that near the top surface of the flow channel, indicating that the grooves would provide protection to the attached cells from the mechanical effects of the flowing medium. We also determined that the shear stress at the cell surface could be reduced by as Much as 30 times (channel 2 height of 100 gm) in the grooved-substrate (0.5 dyn/cm(2)) bioreactor compared to the flat-substrate (15 dyn/cm(2)) bioreactor for a medium flow rate of 4.0 mL/min. Albumin and urea synthesis rates of hepatocytes cocultured with 3T3-J2 fibroblasts remained stable over 5 days of perfusion in the grooved-substrate bioreactor, whereas in the flat-substrate bioreactor they decreased over the same time period. These studies indicate that under "high" flow conditions the microgrooved-substrate in the bioreactor can decrease the detrimental effects of shear stress on the hepatocytes while providing adequate oxygenation, thereby resulting in stable liver-specific function. (c) 2005 Wiley Periodicals, Inc.X1199104sciescopu
Identification of optimal classification functions for biological sample and state discrimination from metabolic profiling data
Motivations: Classification of biological samples for diagnostic purposes is a difficult task because of the many decisions involved on the number, type and functional manipulations of the input variables. This study presents a generally applicable strategy for systematic formulation of optimal diagnostic indexes. To this end, we develop a novel set of computational tools by integrating regression optimization, stepwise variable selection and cross-validation algorithms. Results: The proposed discrimination methodology was applied to plasma and tissue (liver) metabolic profiling data describing the time progression of liver dysfunction in a rat model of acute hepatic failure generated by d-galactosamine (GalN) injection. From the plasma data, our methodology identified seven (out of a total of 23) metabolites, and the corresponding transform functions, as the best inputs to the optimal diagnostic index. This index showed better time resolution and increased noise robustness compared with an existing metabolic index, Fischer's BCAA/AAA molar ratio, as well as indexes generated using other commonly used discriminant analysis tools. Comparison of plasma and liver indexes found two consensus metabolites, lactate and glucose, which implicate glycolysis and/or gluconeogenesis in mediating the metabolic effects of GalN.X111212sciescopu
- …
