4 research outputs found

    Searching for Galactic White Dwarf Binaries in Mock LISA Data using an F-Statistic Template Bank

    Full text link
    We describe an F-statistic search for continuous gravitational waves from galactic white-dwarf binaries in simulated LISA Data. Our search method employs a hierarchical template-grid based exploration of the parameter space. In the first stage, candidate sources are identified in searches using different simulated laser signal combinations (known as TDI variables). Since each source generates a primary maximum near its true "Doppler parameters" (intrinsic frequency and sky position) as well as numerous secondary maxima of the F-statistic in Doppler parameter space, a search for multiple sources needs to distinguish between true signals and secondary maxima associated with other, "louder" signals. Our method does this by applying a coincidence test to reject candidates which are not found at nearby parameter space positions in searches using each of the three TDI variables. For signals surviving the coincidence test, we perform a fully coherent search over a refined parameter grid to provide an accurate parameter estimation for the final candidates. Suitably tuned, the pipeline is able to extract 1989 true signals with only 5 false alarms. The use of the rigid adiabatic approximation allows recovery of signal parameters with errors comparable to statistical expectations, although there is still some systematic excess with respect to statistical errors expected from Gaussian noise. An experimental iterative pipeline with seven rounds of signal subtraction and re-analysis of the residuals allows us to increase the number of signals recovered to a total of 3419 with 29 false alarms.Comment: 29 pages, 11 figures; submitted to Classical and Quantum Gravit

    The Mock LISA Data Challenges: from Challenge 3 to Challenge 4

    Full text link
    The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in Apr 2008, which demonstrated the positive recovery of signals from chirping Galactic binaries, from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference on Gravitational Waves, New York, June 21-26, 200

    Search for a stochastic gravitational-wave signal in the second round of the Mock LISA Data Challenges

    Full text link
    The analysis method currently proposed to search for isotropic stochastic radiation of primordial or astrophysical origin with the Laser Interferometer Space Antenna (LISA) relies on the combined use of two LISA channels, one of which is insensitive to gravitational waves, such as the symmetrised Sagnac. For this method to work, it is essential to know how the instrumental noise power in the two channels are related to one another; however, no quantitative estimates of this key information are available to date. The purpose of our study is to assess the performance of the symmetrised Sagnac method for different levels of prior information regarding the instrumental noise. We develop a general approach in the framework of Bayesian inference and an end-to-end analysis algorithm based on Markov Chain Monte Carlo methods to compute the posterior probability density functions of the relevant model parameters. We apply this method to data released as part of the second round of the Mock LISA Data Challenges. For the selected (and somewhat idealised) cases considered here, we find that a prior uncertainty of a factor ~2 in the ratio between the power of the instrumental noise contributions in the two channels allows for the detection of isotropic stochastic radiation. More importantly, we provide a framework for more realistic studies of LISA's performance and development of analysis techniques in the context of searches for stochastic signals.Comment: 10 pages, 3 figures, GWDAW12 conference proceeding

    The Mock LISA Data Challenges: from Challenge 1B to Challenge 3

    Full text link
    The Mock LISA Data Challenges are a programme to demonstrate and encourage the development of LISA data-analysis capabilities, tools and techniques. At the time of this workshop, three rounds of challenges had been completed, and the next was about to start. In this article we provide a critical analysis of entries to the latest completed round, Challenge 1B. The entries confirm the consolidation of a range of data-analysis techniques for Galactic and massive--black-hole binaries, and they include the first convincing examples of detection and parameter estimation of extreme--mass-ratio inspiral sources. In this article we also introduce the next round, Challenge 3. Its data sets feature more realistic waveform models (e.g., Galactic binaries may now chirp, and massive--black-hole binaries may precess due to spin interactions), as well as new source classes (bursts from cosmic strings, isotropic stochastic backgrounds) and more complicated nonsymmetric instrument noise.Comment: 20 pages, 3 EPS figures. Proceedings of the 12th Gravitational Wave Data Analysis Workshop, Cambridge MA, 13--16 December 2007. Typos correcte
    corecore