485 research outputs found

    The impact of hyperhidrosis on patients' daily life and quality of life : A qualitative investigation

    Get PDF
    Background: An understanding of the daily life impacts of hyperhidrosis and how patients deal with them, based on qualitative research, is lacking. This study investigated the impact of hyperhidrosis on the daily life of patients using a mix of qualitative research methods. Methods: Participants were recruited through hyperhidrosis patient support groups such as the Hyperhidrosis Support Group UK. Data were collected using focus groups, interviews and online surveys. A grounded theory approach was used in the analysis of data transcripts. Data were collected from 71 participants, out of an initial 100 individuals recruited. Results: Seventeen major themes capturing the impacts of hyperhidrosis were identified; these covered all areas of life including daily life, psychological well-being, social life, professional /school life, dealing with hyperhidrosis, unmet health care needs and physical impact. Conclusions: Psychosocial impacts are central to the overall impacts of hyperhidrosis, cutting across and underlying the limitations experienced in other areas of life.Peer reviewe

    Immigrant community integration in world cities

    Full text link
    As a consequence of the accelerated globalization process, today major cities all over the world are characterized by an increasing multiculturalism. The integration of immigrant communities may be affected by social polarization and spatial segregation. How are these dynamics evolving over time? To what extent the different policies launched to tackle these problems are working? These are critical questions traditionally addressed by studies based on surveys and census data. Such sources are safe to avoid spurious biases, but the data collection becomes an intensive and rather expensive work. Here, we conduct a comprehensive study on immigrant integration in 53 world cities by introducing an innovative approach: an analysis of the spatio-temporal communication patterns of immigrant and local communities based on language detection in Twitter and on novel metrics of spatial integration. We quantify the "Power of Integration" of cities --their capacity to spatially integrate diverse cultures-- and characterize the relations between different cultures when acting as hosts or immigrants.Comment: 13 pages, 5 figures + Appendi

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    H5PW10V2O40@VOx/SBA-15-NH2 catalyst for the solventless synthesis of 3-substituted indoles

    Get PDF
    Functionalization of mesoporous SBA-15 frameworks by transition metal oxides offers a flexible route to fabricate new heterogeneous catalysts. Here, an inorganic-organic hybrid nanoporous catalyst H5PW10V2O40@VOx/SBA-15-NH2, was prepared and utilized as an efficient, eco-friendly, and recyclable catalyst for the one-pot, multi-component synthesis of 3-substituted indoles by indole substitution with aldehydes and malononitrile under solvent-free conditions. Catalysts were prepared by the non-covalent attachment of H5PW10V2O40 to a 3 wt%VOx/SBA-15 nanoporous support through a 3-(triethoxysilyl)propylamine linker. VOx/SBA-15 was prepared by a one-pot hydrothermal synthesis from TEOS and vanadium(V) oxytri-tert-butoxide [VO(O-tBu)3]. The resulting H5PW10V2O40@VOx/SBA-15-NH2 material was characterized by bulk and surface analysis including N2 porosimetry, FE-SEM, XRD, XPS, FT-IR, TGA-DTA, UV–Vis and ICP-OES, evidencing retention of the heteropolyacid Keggin structure. H5PW10V2O40@VOx/SBA-15-NH2 exhibits high activity and excellent yields (70–95%) of 3-substituted indoles under mild conditions, with negligible deactivation

    Applications of Nature-Inspired Algorithms for Dimension Reduction: Enabling Efficient Data Analytics

    Get PDF
    In [1], we have explored the theoretical aspects of feature selection and evolutionary algorithms. In this chapter, we focus on optimization algorithms for enhancing data analytic process, i.e., we propose to explore applications of nature-inspired algorithms in data science. Feature selection optimization is a hybrid approach leveraging feature selection techniques and evolutionary algorithms process to optimize the selected features. Prior works solve this problem iteratively to converge to an optimal feature subset. Feature selection optimization is a non-specific domain approach. Data scientists mainly attempt to find an advanced way to analyze data n with high computational efficiency and low time complexity, leading to efficient data analytics. Thus, by increasing generated/measured/sensed data from various sources, analysis, manipulation and illustration of data grow exponentially. Due to the large scale data sets, Curse of dimensionality (CoD) is one of the NP-hard problems in data science. Hence, several efforts have been focused on leveraging evolutionary algorithms (EAs) to address the complex issues in large scale data analytics problems. Dimension reduction, together with EAs, lends itself to solve CoD and solve complex problems, in terms of time complexity, efficiently. In this chapter, we first provide a brief overview of previous studies that focused on solving CoD using feature extraction optimization process. We then discuss practical examples of research studies are successfully tackled some application domains, such as image processing, sentiment analysis, network traffics / anomalies analysis, credit score analysis and other benchmark functions/data sets analysis

    Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017

    Get PDF
    Background Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories. Methods We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections. Findings Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets. Interpretation Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Evolutionary Computation, Optimization and Learning Algorithms for Data Science

    Get PDF
    A large number of engineering, science and computational problems have yet to be solved in a computationally efficient way. One of the emerging challenges is how evolving technologies grow towards autonomy and intelligent decision making. This leads to collection of large amounts of data from various sensing and measurement technologies, e.g., cameras, smart phones, health sensors, smart electricity meters, and environment sensors. Hence, it is imperative to develop efficient algorithms for generation, analysis, classification, and illustration of data. Meanwhile, data is structured purposefully through different representations, such as large-scale networks and graphs. We focus on data science as a crucial area, specifically focusing on a curse of dimensionality (CoD) which is due to the large amount of generated/sensed/collected data. This motivates researchers to think about optimization and to apply nature-inspired algorithms, such as evolutionary algorithms (EAs) to solve optimization problems. Although these algorithms look un-deterministic, they are robust enough to reach an optimal solution. Researchers do not adopt evolutionary algorithms unless they face a problem which is suffering from placement in local optimal solution, rather than global optimal solution. In this chapter, we first develop a clear and formal definition of the CoD problem, next we focus on feature extraction techniques and categories, then we provide a general overview of meta-heuristic algorithms, its terminology, and desirable properties of evolutionary algorithms

    Enhancing the performance of hybrid wave-wind energy systems through a fast and adaptive chaotic multi-objective swarm optimisation method

    Get PDF
    Hybrid offshore renewable energy platforms have been proposed to optimise power production and reduce the levelised cost of energy by integrating or co-locating several renewable technologies. One example is a hybrid wave-wind energy system that combines offshore wind turbines with wave energy converters (WECs) on a single floating foundation. The design of such systems involves multiple parameters and performance measures, making it a complex, multi-modal, and expensive optimisation problem. This paper proposes a novel, robust and effective multi-objective swarm optimisation method (DMOGWA) to provide a design solution that best compromises between maximising WEC power output and minimising the effect on wind turbine nacelle acceleration. The proposed method uses a chaotic adaptive search strategy with a dynamic archive of non-dominated solutions based on diversity to speed up the convergence rate and enhance the Pareto front quality. Furthermore, a modified exploitation technique (Discretisation Strategy) is proposed to handle the large damping and spring coefficient of the Power Take-off (PTO) search space. To evaluate the efficiency of the proposed method, we compare the DMOGWA with four well-known multi-objective swarm intelligence methods (MOPSO, MALO, MODA, and MOGWA) and four popular evolutionary multi-objective algorithms (NSGA-II, MOEA/D, SPEA-II, and PESA-II) based on four potential deployment sites on the South Coast of Australia. The optimisation results demonstrate the dominance of the DMOGWA compared with the other eight methods in terms of convergence speed and quality of solutions proposed. Furthermore, adjusting the hybrid wave-wind model's parameters (WEC design and PTO parameters) using the proposed method (DMOGWA) leads to a considerably improved power output (average proximate boost of 138.5%) and a notable decline in wind turbine nacelle acceleration (41%) throughout the entire operational spectrum compared with the other methods. This improvement could lead to millions of dollars in additional income per year over the lifespan of hybrid offshore renewable energy platforms
    corecore