12 research outputs found

    PHENIX detector overview

    No full text
    The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented. (C) 2002 Elsevier Science B.V. All rights reserved

    Oxidative stress and diabetes: antioxidative strategies

    No full text

    The Family Streptomycetaceae

    No full text
    The family Streptomycetaceae comprises the genera Streptomyces, Kitasatospora, and Streptacidiphilus that are very difficult to differentiate both with genotypic and phenotypic characteristics. A separate generic status for Kitasatospora and Streptacidiphilus is questionable. Members of the family can be characterized as non-acid-alcohol-fast actinomycetes that generate most often an extensively branched substrate mycelium that rarely fragments. At maturity, the aerial mycelium forms chains of few to many spores. A large variety of pigments is produced, responsible for the color of the substrate and aerial mycelium. The organisms are chemoorganotrophic with an oxidative type of metabolism and grow within different pH ranges. Streptomyces are notable for their complex developmental cycle and production of bioactive secondary metabolites, producing more than a third of commercially available antibiotics. Antibacterial, antifungal, antiparasitic, and immunosuppressant compounds have been identified as products of Streptomyces secondary metabolism. Streptomyces can be distinguished from other filamentous actinomycetes on the basis of morphological characteristics, in particular by vegetative mycelium, aerial mycelium, and arthrospores. The genus comprises at the time of writing more than 600 species with validated names. 16S rRNA gene sequence-based analysis for species delineation within the Streptomycetaceae is of limited value. The variations within the 16S rRNA genes—even in the variable regions—are too small to resolve problems of species differentiation and to establish a taxonomic structure within the genus. Comprehensive comparative studies including protein-coding gene sequences with higher phylogenetic resolution and genome-based studies are needed to clarify the species delineation within the Streptomycetaceae
    corecore