337 research outputs found
Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations
Micronutrient malnutrition afflicts over three billion peopleworldwide and the numbers are continuously increasing. Developing genetically micronutrientenriched cereals, which are the predominant source of human dietary, is essential to alleviate malnutrition worldwide. Wheat chromosome 6B derived from wild emmerwheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell] was previously reported to be a source for high Zn concentration in the grain. In the present study, recombinant chromosome substitution lines (RSLs), previously constructed for genetic and physical maps of Gpc-B1 (a 250-kb locus affecting grain protein concentration), were used to identify the effects of the Gpc-B1 locus on grain micronutrient concentrations. RSLs carrying the Gpc-B1 allele of T. dicoccoides accumulated on average 12% higher concentration of Zn, 18% higher concentration of Fe, 29% higher concentration of Mn and 38% higher concentration of protein in the grain as compared with RSLs carrying the allele from cultivated wheat (Triticum durum). Furthermore, the high grain Zn, Fe and Mn concentrations were consistently expressed in five different environments with an absence of genotype by environment interaction. The results obtained in the present study also confirmed the previously reported effect of the wild-type allele of Gpc-B1 on earlier senescence of flag leaves. We suggest that the Gpc-B1 locus is involved in more efficient remobilization of protein, zinc, iron and manganese from leaves to the grains, in addition to its effect on earlier senescence of the green tissues
Application of Rice Husk Ash as Thermal Insulation Materials
A low thermal diffusivity SiO2-based ceramic was fabricated by sintering Malaysia agricultural waste rice husk at 800 °C. This paper presents the effect of sintering temperatures on the phase transformation, microstructure and thermal diffusivity of rice husk ash (RHA) as a thermal insulating material. A series of SiO2-based ceramics were fabricated from rice husk via two sintering stages. Rice husk was pre-sintered at 700 °C and then ground into powder. The RHA powder was compacted into pellets and then re-sintered at a single temperature between 700 and 1400 °C. Sintering of the RHA induces phase transformation from amorphous silica to crystalline α-cristobalite, α-tridymite and β-tridymite. The thermal diffusivities of RHA were evaluated using the laser flash analysis technique. The results indicate RHA-800 °C has the lowest thermal diffusivity, which is 0.17 ± 0.1 mm 2 s −1 at 25 °C. The RHA particle morphologies were observed using a field-emission scanning electron microscopy. Low-frequency vibrational modes of silica such as lattice vibration were investigated using Fourier-transform infrared spectroscopy technique. X-ray fluorescence result indicated that RHA-800 °C contains ~90 wt % of SiO2
Complete genome sequences of elephant endotheliotropic herpesviruses 1A and 1B determined directly from fatal cases
A highly lethal hemorrhagic disease associated with infection by elephant endotheliotropic herpesvirus (EEHV) poses a severe threat to Asian elephant husbandry. We have used high-throughput methods to sequence the genomes of the two genotypes that are involved in most fatalities, namely EEHV1A and EEHV1B (species Elephantid herpesvirus 1, genus Proboscivirus, subfamily Betaherpesvirinae, family Herpesviridae). The sequences were determined from postmortem tissue samples, despite the data containing tiny proportions of viral reads among reads from a host for which the genome sequence was not available. The EEHV1A genome is 180,421 bp in size and consists of a unique sequence (174,601 bp) flanked by a terminal direct repeat (2,910 bp). The genome contains 116 predicted protein-coding genes, of which six are fragmented, and seven paralogous gene families are present. The EEHV1B genome is very similar to that of EEHV1A in structure, size, and gene layout. Half of the EEHV1A genes lack orthologs in other members of subfamily Betaherpesvirinae, such as human cytomegalovirus (genus Cytomegalovirus) and human herpesvirus 6A (genus Roseolovirus). Notable among these are 23 genes encoding type 3 membrane proteins containing seven transmembrane domains (the 7TM family) and seven genes encoding related type 2 membrane proteins (the EE50 family). The EE50 family appears to be under intense evolutionary selection, as it is highly diverged between the two genotypes, exhibits evidence of sequence duplications or deletions, and contains several fragmented genes. The availability of the genome sequences will facilitate future research on the epidemiology, pathogenesis, diagnosis, and treatment of EEHV-associated disease
Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden
Background Current treatment of ovarian cancer patients with chemotherapy leaves behind a residual tumor which results in recurrent ovarian cancer within a short time frame. We have previously demonstrated that a single short-term treatment of ovarian cancer cells with chemotherapy in vitro resulted in a cancer stem cell (CSC)-like enriched residual population which generated significantly greater tumor burden compared to the tumor burden generated by control untreated cells. In this report we looked at the mechanisms of the enrichment of CSC-like residual cells in response to paclitaxel treatment. Methods The mechanism of survival of paclitaxel-treated residual cells at a growth inhibitory concentration of 50% (GI50) was determined on isolated tumor cells from the ascites of recurrent ovarian cancer patients and HEY ovarian cancer cell line by in vitro assays and in a mouse xenograft model. Results Treatment of isolated tumor cells from the ascites of ovarian cancer patients and HEY ovarian cancer cell line with paclitaxel resulted in a CSC-like residual population which coincided with the activation of Janus activated kinase 2 (JAK2) and signal transducer and activation of transcription 3 (STAT3) pathway in paclitaxel surviving cells. Both paclitaxel-induced JAK2/STAT3 activation and CSC-like characteristics were inhibited by a low dose JAK2-specific small molecule inhibitor CYT387 (1 μM) in vitro. Subsequent, in vivo transplantation of paclitaxel and CYT387-treated HEY cells in mice resulted in a significantly reduced tumor burden compared to that seen with paclitaxel only-treated transplanted cells. In vitro analysis of tumor xenografts at protein and mRNA levels demonstrated a loss of CSC-like markers and CA125 expression in paclitaxel and CYT387-treated cell-derived xenografts, compared to paclitaxel only-treated cell-derived xenografts. These results were consistent with significantly reduced activation of JAK2 and STAT3 in paclitaxel and CYT387-treated cell-derived xenografts compared to paclitaxel only-treated cell derived xenografts. Conclusions This proof of principle study demonstrates that inhibition of the JAK2/STAT3 pathway by the addition of CYT387 suppresses the ‘stemness’ profile in chemotherapy-treated residual cells in vitro, which is replicated in vivo, leading to a reduced tumor burden. These findings have important implications for ovarian cancer patients who are treated with taxane and/or platinum-based therapies. Keywords: Ovarian carcinoma, Cancer stem cell, Metastasis, Ascites, Chemoresistance, Recurrence, JAK2/STAT3 pathwa
The Effects of Two Types of Sleep Deprivation on Visual Working Memory Capacity and Filtering Efficiency
Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers)
Differential Ligand Binding to a Human Cytomegalovirus Chemokine Receptor Determines Cell Type–Specific Motility
While most chemokine receptors fail to cross the chemokine class boundary with respect to the ligands that they bind, the human cytomegalovirus (HCMV)-encoded chemokine receptor US28 binds multiple CC-chemokines and the CX3C-chemokine Fractalkine. US28 binding to CC-chemokines is both necessary and sufficient to induce vascular smooth muscle cell (SMC) migration in response to HCMV infection. However, the function of Fractalkine binding to US28 is unknown. In this report, we demonstrate that Fractalkine binding to US28 not only induces migration of macrophages but also acts to inhibit RANTES-mediated SMC migration. Similarly, RANTES inhibits Fractalkine-mediated US28 migration in macrophages. While US28 binding of both RANTES and Fractalkine activate FAK and ERK-1/2, RANTES signals through Gα12 and Fractalkine through Gαq. These findings represent the first example of differential chemotactic signaling via a multiple chemokine family binding receptor that results in migration of two different cell types. Additionally, the demonstration that US28-mediated chemotaxis is both ligand-specific and cell type–specific has important implications in the role of US28 in HCMV pathogenesis
Obesity in total hip arthroplasty—does it really matter?: A meta-analysis
Discussion persists as to whether obesity negatively influences the outcome of hip arthroplasty. We performed a meta-analysis with the primary research question of whether obesity has a negative effect on short- and long-term outcome of total hip arthroplasty. We searched the literature and included studies comparing the outcome of hip arthroplasty in different weight groups. The methodology of the studies included was scored according to the Cochrane guidelines. We extracted and pooled the data. For continuous data, we calculated a weighted mean difference and for dichotomous variables we calculated a weighted odds ratio (OR). Heterogeneity was calculated using I(2) statistics. 15 studies were eligible for data extraction. In obese patients, dislocation of the hip (OR = 0.54, 95% CI: 0.38-0.75) (10 studies, n = 8,634), aseptic loosening (OR = 0.64, CI: 0.43-0.96) (6 studies, n = 5,137), infection (OR = 0.3, CI: 0.19-0.49) (10 studies, n = 7,500), and venous thromboembolism (OR = 0.56, CI: 0.32-0.98) (7 studies, n = 3,716) occurred more often. Concerning septic loosening and intraoperative fractures, no statistically significant differences were found, possibly due to low power. Subjective outcome measurements did not allow pooling because of high heterogeneity (I(2) = 68%). Obesity appears to have a negative influence on the outcome of total hip replacemen
Evaluation of the accuracy of different transfer impression techniques for multiple implants
The aim of this study was to evaluate the accuracy of three implant transfer impression techniques. Four groups (n = 5) were defined, according to the technique: TC - tapered copings without splint; SC - square copings without splint; SCS - square copings splinted with dental floss and acrylic resin, and CG (control group) - master model with four external hexagonal implants and a superstructure. Individual trays and polyether were used for the impression. All casts were checked for their fit into the master superstructure; for this, all four screws were placed in the implants. Digital photos were taken and images were analyzed using UTHSCSA ImageTool software. Statistical analyses were performed using one-way analysis of variance and Student’s t test (p < 0.05). The means and standard deviation were (µm): CG = 2.03 ± 0.00, TC = 14.74 ± 3.41, SC = 12.08 ± 2.56, and SCS = 6.51 ± 0.09. The control group was found to be statistically different from the TC and SC groups. Within the limitations of this study, all groups presented clinically acceptable standard gap values, and the SCS group showed no statistical difference in relation to the CG (control group), demonstrating more accuracy and fidelity to transfer implants
Sleep Loss Produces False Memories
People sometimes claim with high confidence to remember events that in fact never happened, typically due to strong semantic associations with actually encoded events. Sleep is known to provide optimal neurobiological conditions for consolidation of memories for long-term storage, whereas sleep deprivation acutely impairs retrieval of stored memories. Here, focusing on the role of sleep-related memory processes, we tested whether false memories can be created (a) as enduring memory representations due to a consolidation-associated reorganization of new memory representations during post-learning sleep and/or (b) as an acute retrieval-related phenomenon induced by sleep deprivation at memory testing. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., “night”, “dark”, “coal”,…), lacking the strongest common associate or theme word (here: “black”). Subjects either slept or stayed awake immediately after learning, and they were either sleep deprived or not at recognition testing 9, 33, or 44 hours after learning. Sleep deprivation at retrieval, but not sleep following learning, critically enhanced false memories of theme words. This effect was abolished by caffeine administration prior to retrieval, indicating that adenosinergic mechanisms can contribute to the generation of false memories associated with sleep loss
- …
