18 research outputs found

    Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning

    Get PDF
    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects’ antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation

    E-β-Ocimene, a Volatile Brood Pheromone Involved in Social Regulation in the Honey Bee Colony (Apis mellifera)

    Get PDF
    Background: In honey bee colony, the brood is able to manipulate and chemically control the workers in order to sustain their own development. A brood ester pheromone produced primarily by old larvae (4 and 5 days old larvae) was first identified as acting as a contact pheromone with specific effects on nurses in the colony. More recently a new volatile brood pheromone has been identified: E-β-ocimene, which partially inhibits ovary development in workers. [br/] Methodology and Principal Finding: Our analysis of E-β-ocimene production revealed that young brood (newly hatched to 3 days old) produce the highest quantity of E-b-ocimene relative to their body weight. By testing the potential action of this molecule as a non-specific larval signal, due to its high volatility in the colony, we demonstrated that in the presence of E-β-ocimene nest workers start to forage earlier in life, as seen in the presence of real brood. [br/] Conclusions/Significance: In this way, young larvae are able to assign precedence to the task of foraging by workers in order to increase food stores for their own development. Thus, in the complexity of honey bee chemical communication, E-β- ocimene, a pheromone of young larvae, provides the brood with the means to express their nutritional needs to the workers

    Consolidation of an Olfactory Memory Trace in the Olfactory Bulb Is Required for Learning-Induced Survival of Adult-Born Neurons and Long-Term Memory

    Get PDF
    Background: It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. Methodology/Principal Findings: Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. Conclusion/Significance: We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival durin

    Brief sensory experience differentially affects the volume of olfactory brain centres in a moth

    Get PDF
    International audienceExperience modifies behaviour in animals so that they adapt to their environment. In male noctuid moths, Spodoptera littoralis, brief pre-exposure to various behaviourally relevant sensory signals modifies subsequent behaviour towards the same or different sensory modalities. Correlated with a behavioural increase in responses of male moths to the female-emitted sex pheromone after pre-exposure to olfactory, acoustic or gustatory stimuli, an increase in sensitivity of olfactory neurons within the primary olfactory centre, the antennal lobe, is found for olfactory and acoustic stimuli, but not for gustatory stimuli. Here, we investigated whether anatomical changes occurring in the antennal lobes and in the mushroom bodies (the secondary olfactory centres) possibly correlated with the changes observed in behaviour and in olfactory neuron physiology. Our results showed that significant volume changes occurred in glomeruli (olfactory units) responsive to sex pheromone following exposure to both pheromone and predator sounds. The volume of the mushroom body input region (calyx) also increased significantly after pheromone and predator sound treatment. However, we found no changes in the volume of antennal lobe glomeruli or of the mushroom body calyx after pre-exposure to sucrose. These findings show a relationship of antennal lobe sensitivity changes to the pheromone with changes in the volume of the related glomeruli and the output area of antennal lobe projection neurons elicited by sensory cues causing a behavioural change. Behavioural changes observed after sucrose pre-exposure must originate from changes in higher integration centres in the brain.</p

    Crayfish Recognize the Faces of Fight Opponents

    Get PDF
    The capacity to associate stimuli underlies many cognitive abilities, including recognition, in humans and other animals. Vertebrates process different categories of information separately and then reassemble the distilled information for unique identification, storage and recall. Invertebrates have fewer neural networks and fewer neural processing options so study of their behavior may reveal underlying mechanisms still not fully understood for any animal. Some invertebrates form complex social colonies and are capable of visual memory-bees and wasps, for example. This ability would not be predicted in species that interact in random pairs without strong social cohesion; for example, crayfish. They have chemical memory but the extent to which they remember visual features is unknown. Here we demonstrate that the crayfish Cherax destructor is capable of visual recognition of individuals. The simplicity of their interactions allowed us to examine the behavior and some characteristics of the visual features involved. We showed that facial features are learned during face-to-face fights, that highly variable cues are used, that the type of variability is important, and that the learning is context-dependent. We also tested whether it is possible to engineer false identifications and for animals to distinguish between twin opponents

    Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity

    No full text
    corecore