16 research outputs found
The use of common bean (Phaseolus vulgaris ) traditional varieties and their mixtures with commercial varieties to manage bean fly (Ophiomyia spp .) infestations in Uganda
The bean fly (Ophiomyia spp.) is considered the most economically damaging field insect pest of common beans in Uganda. Despite the use of existing pest management approaches, reported damage has remained high. Forty-eight traditional and improved common bean varieties currently grown in farmers’ fields were evaluated for resistance against bean fly. Data on bean fly incidence, severity and root damage from bean stem maggot were collected. Generalized linear mixed model (GLMM) revealed significant resistance to bean fly in the Ugandan traditional varieties. A popular resistant traditional variety and a popular susceptible commercial variety were selected from the 48 varieties and evaluated in pure and mixed stands. The incidence of bean fly infestation on both varieties in mixtures with different arrangements (systematic random versus rows), and different proportions within each of the two arrangements, was measured and analysed using GLMMs. The proportion of resistant varieties in a
mixture and the arrangement type significantly decreased bean fly damage compared to pure stands, with the highest decrease in damage registered in the systematic random mixture with at least 50 % of resistant variety. The highest reduction in root damage, obvious 21 days after planting, was found in systematic random mixtures with at least 50 % of the resistant variety. Small holder farmers in East Africa and elsewhere in the world have local preferences for growing bean varieties in genetic mixtures. These mixtures can be enhanced by the use of resistant varieties in the mixtures to reduce bean fly damage on susceptible popular varieties
The use of common bean (Phaseolus vulgaris) traditional varieties and their mixtures with commercial varieties to manage bean fly (Ophiomyia spp.) infestations in Uganda
Habitat manipulation to mitigate the impacts of invasive arthropod pests
Exotic invaders are some of the most serious insect pests of agricultural crops around the globe. Increasingly, the structure of landscape and habitat is recognized as having a major influence on both insect pests and their natural enemies. Habitat manipulation that aims at conserving natural enemies can potentially contribute to safer and more effective control of invasive pests. In this paper, we review habitat management experiments, published during the last 10 years, which have aimed to improve biological control of invasive pests. We then discuss during what conditions habitat management to conserve natural enemies is likely to be effective and how the likelihood of success of such methods can be improved. We finally suggest an ecologically driven research agenda for habitat management programmes.We acknowledge the following funding sources: the Tertiary Education Commission, New Zealand, through the Bio-Protection Research Centre, Lincoln University, New Zealand (Mattias Jonsson and Steve Wratten), the New Zealand Foundation for Research, Science and Technology (FRST); project LINX0303 (Steve Wratten, Ross Cullen, Jean Tompkins), Lincoln University, New Zealand, for a Post-graduate Scholarship to Jean Tompkins, USDA CSREES Risk Avoidance and Mitigation Program (2004-51101-02210), USDA NC SARE Project (LCN 04-249), USDA CSREES Arthropod and Nematode Biology (2004-35302-14811), North Central Regional IPM, NSF-LTER at Kellogg Biological Station (NSF DEB 0423627), and the Michigan Agricultural Experiment Station (Doug Landis)
