768 research outputs found

    Spin-Imbalance in a One-Dimensional Fermi Gas

    Full text link
    Superconductivity and magnetism generally do not coexist. Changing the relative number of up and down spin electrons disrupts the basic mechanism of superconductivity, where atoms of opposite momentum and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell and Larkin and Ovchinnikov proposed an exotic pairing mechanism (FFLO) where magnetism is accommodated by formation of pairs with finite momentum. Despite intense theoretical and experimental efforts, however, polarized superconductivity remains largely elusive. Here we report experimental measurements of density profiles of a two spin mixture of ultracold 6Li atoms trapped in an array of one dimensional (1D) tubes, a system analogous to electrons in 1D wires. At finite spin imbalance, the system phase separates with an inverted phase profile in comparison to the three-dimensional case. In 1D we find a partially polarized core surrounded by wings composed of either a completely paired BCS superfluid or a fully polarized Fermi gas, depending on the degree of polarization. Our observations are in quantitative agreement with theoretical calculations in which the partially polarized phase is found to be a 1D analogue of the FFLO state. This study demonstrates how ultracold atomic gases in 1D may be used to create non-trivial new phases of matter, and also paves the way for direct observation and further study of the FFLO phase.Comment: 30 pages, 7 figure

    Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish

    Get PDF
    The authors would like to thank the Royal Society of London, the National Eye Research Centre, the Visual Research Trust, Fight for Sight, the W.H. Ross Foundation, the Rosetrees Trust, and the Glasgow Children’s Hospital Charity for supporting this work. This work was also supported by the Deanship of Scientific Research at King Saud University for funding this research (Research Project) grant number ‘RGP – VPP – 219’.Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.Publisher PDFPeer reviewe

    The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

    Get PDF
    Abstract We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis

    Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis

    Get PDF
    Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis (= O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Bidirectional Modulation of Alcohol-Associated Memory Reconsolidation through Manipulation of Adrenergic Signaling.

    Get PDF
    Alcohol addiction is a problem of great societal concern, for which there is scope to improve current treatments. One potential new treatment for alcohol addiction is based on disrupting the reconsolidation of the maladaptive Pavlovian memories that can precipitate relapse to drug-seeking behavior. In alcohol self-administering rats, we investigated the effects of bidirectionally modulating adrenergic signaling on the strength of a Pavlovian cue-alcohol memory, using a behavioral procedure that isolates the specific contribution of one maladaptive Pavlovian memory to relapse, the acquisition of a new alcohol-seeking response for an alcohol-associated conditioned reinforcer. The β-adrenergic receptor antagonist propranolol, administered in conjunction with memory reactivation, persistently disrupted the memory that underlies the capacity of a previously alcohol-associated cue to act as a conditioned reinforcer. By contrast, enhancement of adrenergic signaling by administration of the adrenergic prodrug dipivefrin at reactivation increased the strength of the cue-alcohol memory and potentiated alcohol seeking. These data demonstrate the importance of adrenergic signaling in alcohol-associated memory reconsolidation, and suggest a pharmacological target for treatments aiming to prevent relapse through the disruption of maladaptive memories.This work was supported by a UK Medical Research Council Programme Grant (G1002231) to BJE and ALM and was conducted in the Behavioural and Clinical Neuroscience Institute (BCNI), an initiative jointly funded by the MRC and the Wellcome Trust. MJWS was supported by an MRC Doctoral Training Grant and the James Baird Fund at the Medical School of the University of Cambridge. ALM was partly supported by a BCNI lectureship and the Ferreras-Willetts Fellowship from Downing College, Cambridge.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/npp.2015.24

    Toxoplasma Effector MAF1 Mediates Recruitment of Host Mitochondria and Impacts the Host Response

    Get PDF
    Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA-) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA- strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria. © 2014 Pernas et al

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae.

    Get PDF
    Green algae expressing a carbon-concentrating mechanism (CCM) are usually associated with a Rubisco-containing micro-compartment, the pyrenoid. A link between the small subunit (SSU) of Rubisco and pyrenoid formation in Chlamydomonas reinhardtii has previously suggested that specific RbcS residues could explain pyrenoid occurrence in green algae. A phylogeny of RbcS was used to compare the protein sequence and CCM distribution across the green algae and positive selection in RbcS was estimated. For six streptophyte algae, Rubisco catalytic properties, affinity for CO2 uptake (K0.5 ), carbon isotope discrimination (δ13 C) and pyrenoid morphology were compared. The length of the βA-βB loop in RbcS provided a phylogenetic marker discriminating chlorophyte from streptophyte green algae. Rubisco kinetic properties in streptophyte algae have responded to the extent of inducible CCM activity, as indicated by changes in inorganic carbon uptake affinity, δ13 C and pyrenoid ultrastructure between high and low CO2 conditions for growth. We conclude that the Rubisco catalytic properties found in streptophyte algae have coevolved and reflect the strength of any CCM or degree of pyrenoid leakiness, and limitations to inorganic carbon in the aquatic habitat, whereas Rubisco in extant land plants reflects more recent selective pressures associated with improved diffusive supply of the terrestrial environment.NE/L002507/1, BB/M007693/1, BB/I024518/1 (NERC, BBSRC and NSF). A Cambridge Trust Vice Chancellor’s award and Lucy Cavendish College, Cambridge, for supporting the PhD scholarship of MMMG. DJO and ECS acknowledge support from (BBSRC; grant number BB/I024488/1)

    Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning

    Get PDF
    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects’ antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation
    corecore