1,055 research outputs found
Radio Follow-Up of Gravitational-Wave Triggers During Advanced Ligo O1
The American Astronomical Society. All rights reserved.We present radio follow-up observations carried out with the Karl G. Jansky Very Large Array during the first observing run (O1) of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). A total of three gravitational-wave triggers were followed-up during the 4 months of O1, from 2015 September to 2016 January. Two of these triggers, GW150914 and GW151226, are binary black hole (BH) merger events of high significance. A third trigger, G194575, was subsequently declared as an event of no interest (i.e., a false alarm). Our observations targeted selected optical transients identified by the intermediate Palomar Transient Factory in the Advanced LIGO error regions of the three triggers, and a limited region of the gravitational-wave localization area of G194575 not accessible to optical telescopes due to Sun constraints, where a possible high-energy transient was identified. No plausible radio counterparts to GW150914 and GW151226 were found, in agreement with expectations for binary BH mergers. We show that combining optical and radio observations is key to identifying contaminating radio sources that may be found in the follow-up of gravitational-wave triggers, such as emission associated with star formation and active galactic nuclei. We discuss our results in the context of the theoretical predictions for radio counterparts to gravitational-wave transients, and describe our future plans for the radio follow-up of Advanced LIGO (and Virgo) triggers. © 2016
Tycho Brahe's 1572 supernova as a standard type Ia explosion revealed from its light echo spectrum
Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarf stars
in close binary systems. They play an important role as cosmological distance
indicators and have led to the discovery of the accelerated expansion of the
Universe. Among the most important unsolved questions are how the explosion
actually proceeds and whether accretion occurs from a companion or via the
merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is
thought to be one of the best candidates for a SN Ia in the Milky Way. The
proximity of the SN 1572 remnant has allowed detailed studies, such as the
possible identification of the binary companion, and provides a unique
opportunity to test theories of the explosion mechanism and the nature of the
progenitor. The determination of the yet unknown exact spectroscopic type of SN
1572 is crucial to relate these results to the diverse population of SNe Ia.
Here we report an optical spectrum of Tycho Brahe's supernova near maximum
brightness, obtained from a scattered-light echo more than four centuries after
the direct light of the explosion swept past Earth. We find that SN 1572
belongs to the majority class of normal SNe Ia. The presence of a strong Ca II
IR feature at velocities exceeding 20,000 km/s, which is similar to the
previously observed polarized features in other SNe Ia, suggests asphericity in
SN 1572.Comment: 15 pages, 3 figures - accepted for publication in Natur
SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology
HET Optical spectra covering the evolution from about 6 days before to about
5 weeks after maximum light and the ROTSE-IIIb unfiltered light curve of the
"Branch-normal" Type Ia Supernova SN 2005hj are presented. The host galaxy
shows HII region lines at redshift of z=0.0574, which puts the peak unfiltered
absolute magnitude at a somewhat over-luminous -19.6. The spectra show weak and
narrow SiII lines, and for a period of at least 10 days beginning around
maximum light these profiles do not change in width or depth and they indicate
a constant expansion velocity of ~10,600 km/s. We analyzed the observations
based on detailed radiation dynamical models in the literature. Whereas delayed
detonation and deflagration models have been used to explain the majority of
SNe Ia, they do not predict a long velocity plateau in the SiII minimum with an
unvarying line profile. Pulsating delayed detonations and merger scenarios form
shell-like density structures with properties mostly related to the mass of the
shell, M_shell, and we discuss how these models may explain the observed SiII
line evolution; however, these models are based on spherical calculations and
other possibilities may exist. SN 2005hj is consistent with respect to the
onset, duration, and velocity of the plateau, the peak luminosity and, within
the uncertainties, with the intrinsic colors for models with M_shell=0.2 M_sun.
Our analysis suggests a distinct class of events hidden within the
Branch-normal SNe Ia. If the predicted relations between observables are
confirmed, they may provide a way to separate these two groups. We discuss the
implications of two distinct progenitor classes on cosmological studies
employing SNe Ia, including possible differences in the peak luminosity to
light curve width relation.Comment: ApJ accepted, 31 page
Strong Ultraviolet Pulse From a Newborn Type Ia Supernova
Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs.
Although they are used empirically to measure cosmological distances, the
nature of their progenitors remains mysterious, One of the leading progenitor
models, called the single degenerate channel, hypothesizes that a white dwarf
accretes matter from a companion star and the resulting increase in its central
pressure and temperature ignites thermonuclear explosion. Here we report
observations of strong but declining ultraviolet emission from a Type Ia
supernova within four days of its explosion. This emission is consistent with
theoretical expectations of collision between material ejected by the supernova
and a companion star, and therefore provides evidence that some Type Ia
supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur
Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications
The ultimate fate of the universe, infinite expansion or a big crunch, can be
determined by measuring the redshifts, apparent brightnesses, and intrinsic
luminosities of very distant supernovae. Recent developments have provided
tools that make such a program practicable: (1) Studies of relatively nearby
Type Ia supernovae (SNe Ia) have shown that their intrinsic luminosities can be
accurately determined; (2) New research techniques have made it possible to
schedule the discovery and follow-up observations of distant supernovae,
producing well over 50 very distant (z = 0.3 -- 0.7) SNe Ia to date. These
distant supernovae provide a record of changes in the expansion rate over the
past several billion years. By making precise measurements of supernovae at
still greater distances, and thus extending this expansion history back far
enough in time, we can distinguish the slowing caused by the gravitational
attraction of the universe's mass density Omega_M from the effect of a possibly
inflationary pressure caused by a cosmological constant Lambda. We report here
the first such measurements, with our discovery of a Type Ia supernova (SN
1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the
most distant spectroscopically confirmed supernova. Over two months of
photometry of SN 1997ap with the Hubble Space Telescope and ground-based
telescopes, when combined with previous measurements of nearer SNe Ia, suggests
that we may live in a low mass-density universe. Further supernovae at
comparable distances are currently scheduled for ground and space-based
observations.Comment: 12 pages and 4 figures (figure 4 is repeated in color and black and
white) Nature, scheduled for publication in the 1 January, 1998 issue. Also
available at http://www-supernova.lbl.go
Recommended from our members
Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material
© 2020. The American Astronomical Society. All rights reserved.. We present a survey of the early evolution of 12 Type IIn supernovae (SNe IIn) at ultraviolet and visible light wavelengths. We use this survey to constrain the geometry of the circumstellar material (CSM) surrounding SN IIn explosions, which may shed light on their progenitor diversity. In order to distinguish between aspherical and spherical CSM, we estimate the blackbody radius temporal evolution of the SNe IIn of our sample, following the method introduced by Soumagnac et al. We find that higher-luminosity objects tend to show evidence for aspherical CSM. Depending on whether this correlation is due to physical reasons or to some selection bias, we derive a lower limit between 35% and 66% for the fraction of SNe IIn showing evidence for aspherical CSM. This result suggests that asphericity of the CSM surrounding SNe IIn is common - consistent with data from resolved images of stars undergoing considerable mass loss. It should be taken into account for more realistic modeling of these events
IPTF Search for An Optical Counterpart to Gravitational-Wave TransientT GW150914
The American Astronomical Society. All rights reserved..The intermediate Palomar Transient Factory (iPTF) autonomously responded to and promptly tiled the error region of the first gravitational-wave event GW150914 to search for an optical counterpart. Only a small fraction of the total localized region was immediately visible in the northern night sky, due both to Sun-angle and elevation constraints. Here, we report on the transient candidates identified and rapid follow-up undertaken to determine the nature of each candidate. Even in the small area imaged of 126 deg2, after extensive filtering, eight candidates were deemed worthy of additional follow-up. Within two hours, all eight were spectroscopically classified by the Keck II telescope. Curiously, even though such events are rare, one of our candidates was a superluminous supernova. We obtained radio data with the Jansky Very Large Array and X-ray follow-up with the Swift satellite for this transient. None of our candidates appear to be associated with the gravitational-wave trigger, which is unsurprising given that GW150914 came from the merger of two stellar-mass black holes. This end-to-end discovery and follow-up campaign bodes well for future searches in this post-detection era of gravitational waves
- …
