1,314 research outputs found
Ordinary morality does not imply atheism
Many theist as well as many atheist philosophers have maintained that if
God exists, then every instance of undeserved, unwanted suffering ultimately
benefits the sufferer. Recently, several authors have argued that this implication of
theism conflicts with ordinary morality. I show that these arguments all rest on a
common mistake. Defenders of these arguments overlook the role of merely
potential instances of suffering in determining our moral obligations toward
suffering
Profiles of physical, emotional and psychosocial wellbeing in the Lothian birth cohort 1936
<p>Abstract</p> <p>Background</p> <p>Physical, emotional, and psychosocial wellbeing are important domains of function. The aims of this study were to explore the existence of separable groups among 70-year olds with scores representing physical function, perceived quality of life, and emotional wellbeing, and to characterise any resulting groups using demographic, personality, cognition, health and lifestyle variables.</p> <p>Methods</p> <p>We used latent class analysis (LCA) to identify possible groups.</p> <p>Results</p> <p>Results suggested there were 5 groups. These included High (n = 515, 47.2% of the sample), Average (n = 417, 38.3%), and Poor Wellbeing (n = 37, 3.4%) groups. The two other groups had contrasting patterns of wellbeing: one group scored relatively well on physical function, but low on emotional wellbeing (Good Fitness/ Low Spirits,n = 60, 5.5%), whereas the other group showed low physical function but relatively well emotional wellbeing (Low Fitness/Good Spirits, n = 62, 5.7%). Salient characteristics that distinguished all the groups included smoking and drinking behaviours, personality, and illness.</p> <p>Conclusions</p> <p>Despite there being some evidence of these groups, the results also support a largely one-dimensional construct of wellbeing in old age—for the domains assessed here—though with some evidence that some individuals have uneven profiles.</p
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation
Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of
endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Severe vitamin D deficiency in 6 Canadian First Nation formula-fed infants
Background. Rickets was first described in the 17th century and vitamin D deficiency was recognized as the underlying cause in the early 1900s. Despite this long history, vitamin D deficiency remains a significant health concern. Currently, vitamin D supplementation is recommended in Canada for breast fed infants. There are no recommendations for supplementation in formula-fed infants. Objective. The objective of this report is to bring attention to the risk of severe vitamin D deficiency in high risk, formula fed infants. Design. A retrospective chart review was used to create this clinical case series. Results. Severe vitamin D deficiency was diagnosed in six formula-fed infants over a two-and-a-half year period. All six infants presented with seizures and they resided in First Nation communities located at latitude 54 in the province of Manitoba. While these infants had several risk factors for vitamin D deficiency, they were all receiving cow's milk based formula supplemented with 400 IU/L of vitamin D. Conclusion. This report suggests that current practice with regards to vitamin D supplementation may be inadequate, especially for high-risk infants. Health care professionals providing service to infants in a similar situation should be aware of this preventable condition. Hopefully this would contribute to its prevention, diagnosis and management
C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape
Numerous small molecules (termed inducers), many of which are electrophiles, upregulate cytoprotective responses and inhibit pro-inflammatory pathways by activating nuclear factor-erythroid 2 p45-related factor 2 (NRF2). Key to NRF2 activation is the ability to chemically modifying critical sensor cysteines in the main negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1), of which C151, C273 and C288 are best characterized. This study aimed to establish the requirement for these cysteine sensor(s) for the biological activities of the most potent NRF2 activators known to date, the cyclic cyanoenones, some of which are in clinical trials. It was found that C151 in KEAP1 is the main cysteine sensor for this class of inducers, irrespective of molecular size or shape. Furthermore, in primary macrophage cells expressing C151S mutant KEAP1, at low concentrations, the tricyclic cyanoenone TBE-31 is inactive as an activator of NRF2 as well as an inhibitor of lipopolysaccharide-stimulated gene expression of the pro-inflammatory cytokines IL6 and IL1β. However, at high inducer concentrations, NRF2 activation proceeds in the absence of C151, albeit at a lower magnitude. Our findings highlight the intrinsic flexibility of KEAP1 and emphasize the critical importance of establishing the precise dose of NRF2 activators for maintaining on-target selectivity
Risks to Birds Traded for African Traditional Medicine: A Quantitative Assessment
Few regional or continent-wide assessments of bird use for traditional medicine have been attempted anywhere in the world. Africa has the highest known diversity of bird species used for this purpose. This study assesses the vulnerability of 354 bird species used for traditional medicine in 25 African countries, from 205 genera, 70 families, and 25 orders. The orders most represented were Passeriformes (107 species), Falconiformes (45 species), and Coraciiformes (24 species), and the families Accipitridae (37 species), Ardeidae (15 species), and Bucerotidae (12 species). The Barn owl (Tyto alba) was the most widely sold species (seven countries). The similarity of avifaunal orders traded is high (analogous to ‘‘morphospecies’’, and using Sørensen’s index), which suggests opportunities for a common understanding of cultural factors driving demand. The highest similarity was between bird orders sold in markets of Benin vs. Burkina Faso (90%), but even bird orders sold in two geographically separated countries (Benin vs. South Africa and Nigeria vs. South Africa) were 87% and 81% similar, respectively. Rabinowitz’s ‘‘7 forms of rarity’’ model, used to group species according to commonness or rarity, indicated that 24% of traded bird species are very common, locally abundant in several habitats, and occur over a large geographical area, but 10% are rare, occur in low numbers in specific habitats, and over a small geographical area. The order with the highest proportion of rare species was the Musophagiformes. An analysis of species mass (as a proxy for size) indicated that large and/or conspicuous species tend to be targeted by harvesters for the traditional medicine trade. Furthermore, based on cluster analyses for species groups of similar risk, vultures, hornbills, and other large avifauna, such as bustards, are most threatened by selective harvesting and should be prioritised for conservation action.University of the Witwatersrand SPARC Prestigious and URC Postdoctoral Fellowships;
National Research Foundatio
Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens
Museum specimens represent valuable genomic resources for understanding host-endosymbiont/parasitoid evolutionary relationships, resolving species complexes and nomenclatural problems. However, museum collections suffer DNA degradation, making them challenging for molecular-based studies. Here, the mitogenomes of a single 1912 Sri Lankan Bemisia emiliae cotype puparium, and of a 1942 Japanese Bemisia puparium are characterised using a Next-Generation Sequencing approach. Whiteflies are small sap-sucking insects including B. tabaci pest species complex. Bemisia emiliae’s draft mitogenome showed a high degree of homology with published B. tabaci mitogenomes, and exhibited 98–100% partial mitochondrial DNA Cytochrome Oxidase I (mtCOI) gene identity with the B. tabaci species known as Asia II-7. The partial mtCOI gene of the Japanese specimen shared 99% sequence identity with the Bemisia ‘JpL’ genetic group. Metagenomic analysis identified bacterial sequences in both Bemisia specimens, while hymenopteran sequences were also identified in the Japanese Bemisia puparium, including complete mtCOI and rRNA genes, and various partial mtDNA genes. At 88–90% mtCOI sequence identity to Aphelinidae wasps, we concluded that the 1942 Bemisia nymph was parasitized by an Eretmocerus parasitoid wasp. Our approach enables the characterisation of genomes and associated metagenomic communities of museum specimens using 1.5 ng gDNA, and to infer historical tritrophic relationships in Bemisia whiteflies.© The Author(s) 2017. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
The attached file is the published pdf
The cystic fibrosis microbiome in an ecological perspective and its impact in antibiotic therapy
The recent focus on the cystic fibrosis (CF) complex microbiome has led to the recognition that the microbes can interact between them and with the host immune system, affecting the disease progression and treatment routes. Although the main focus remains on the interactions between traditional pathogens, growing evidence supports the contribution and the role of emergent species. Understanding the mechanisms and the biological effects involved in polymicrobial interactions may be the key to improve effective therapies and also to define new strategies for disease control. This review focuses on the interactions between microbe-microbe and host-microbe, from an ecological point of view, discussing their impact on CF disease progression. There are increasing indications that these interactions impact the success of antimicrobial therapy. Consequently, a new approach where therapy is personalized to patients by taking into account their individual CF microbiome is suggested.Portuguese Foundation for Science and Technology (FCT), the strategic funding of UID/BIO/04469/2013-CEB and UID/EQU/00511/2013-LEPABE units. This study was also supported by FCT and the European Community fund FEDER, through Program COMPETE, under the scope of the Projects “DNA mimics” PIC/IC/82815/2007, RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), “BioHealth—Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-000027 and NORTE-07-0124-FEDER-000025—RL2_ Environment and Health, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. The authors also acknowledge the grant of Susana P. Lopes (SFRH/BPD/95616/2013) and of the COST-Action TD1004: Theragnostics for imaging and therapy
- …
