33 research outputs found

    Intracranial V. cholerae Sialidase Protects against Excitotoxic Neurodegeneration

    Get PDF
    Converging evidence shows that GD3 ganglioside is a critical effector in a number of apoptotic pathways, and GM1 ganglioside has neuroprotective and noötropic properties. Targeted deletion of GD3 synthase (GD3S) eliminates GD3 and increases GM1 levels. Primary neurons from GD3S−/− mice are resistant to neurotoxicity induced by amyloid-β or hyperhomocysteinemia, and when GD3S is eliminated in the APP/PSEN1 double-transgenic model of Alzheimer's disease the plaque-associated oxidative stress and inflammatory response are absent. To date, no small-molecule inhibitor of GD3S exists. In the present study we used sialidase from Vibrio cholerae (VCS) to produce a brain ganglioside profile that approximates that of GD3S deletion. VCS hydrolyzes GD1a and complex b-series gangliosides to GM1, and the apoptogenic GD3 is degraded. VCS was infused by osmotic minipump into the dorsal third ventricle in mice over a 4-week period. Sensorimotor behaviors, anxiety, and cognition were unaffected in VCS-treated mice. To determine whether VCS was neuroprotective in vivo, we injected kainic acid on the 25th day of infusion to induce status epilepticus. Kainic acid induced a robust lesion of the CA3 hippocampal subfield in aCSF-treated controls. In contrast, all hippocampal regions in VCS-treated mice were largely intact. VCS did not protect against seizures. These results demonstrate that strategic degradation of complex gangliosides and GD3 can be used to achieve neuroprotection without adversely affecting behavior

    Molecular mechanisms of EGF signaling-dependent regulation of pipe, a gene crucial for dorsoventral axis formation in Drosophila

    Get PDF
    During Drosophila oogenesis the expression of the sulfotransferase Pipe in ventral follicle cells is crucial for dorsoventral axis formation. Pipe modifies proteins that are incorporated in the ventral eggshell and activate Toll signaling which in turn initiates embryonic dorsoventral patterning. Ventral pipe expression is the result of an oocyte-derived EGF signal which down-regulates pipe in dorsal follicle cells. The analysis of mutant follicle cell clones reveals that none of the transcription factors known to act downstream of EGF signaling in Drosophila is required or sufficient for pipe regulation. However, the pipe cis-regulatory region harbors a 31-bp element which is essential for pipe repression, and ovarian extracts contain a protein that binds this element. Thus, EGF signaling does not act by down-regulating an activator of pipe as previously suggested but rather by activating a repressor. Surprisingly, this repressor acts independent of the common co-repressors Groucho or CtBP

    Correlative SICM-FCM reveals changes in morphology and kinetics of endocytic pits induced by disease-associated mutations in dynamin

    No full text
    Dynamin 2 (DNM2) is a GTP-binding protein that controls endocytic vesicle scission and defines a wholeclass of dynamin-dependent endocytosis, including clathrin-mediated endocytosis bycaveoli. It has been suggestedthat mutations in theDNM2gene, associated with 3 inherited diseases, disrupt endocytosis. However, how exactlymutations affect the nanoscale morphology of endocytic machinery has never been studied. In this paper, we used livecorrelative scanning ion conductance microscopy (SICM) and fluorescence confocal microscopy (FCM) to study howdisease-associated mutations affect the morphology and kinetics of clathrin-coated pits (CCPs) by directly followingtheir dynamics of formation, maturation, and internalizationinskinfibroblastsfrompatients with centronuclearmyopathy (CNM) and in Cos-7 cells expressing corresponding dynamin mutants. Using SICM-FCM, which we havedeveloped, we show how p.R465W mutation disrupts pit structure, preventing its maturation and internalization, andsignificantly increases the lifetime of CCPs. Differently,p.R522H slows down the formation of CCPs without affectingtheir internalization. We also found that CNM mutations inDNM2affect the distribution of caveoli and reduce dorsalruffling in human skin fibroblasts. Collectively, our SICM-FCM findings at single CCP level, backed up by electronmicroscopy data,argue for the impairment of several forms of endocytosis inDNM2-linked CNM.—Ali,T.,Bednarska,J.,Vassilopoulos,S.,Tran,M.,Diakonov,I.A.,Ziyadeh-Isleem,A.,Guicheney,P.,Gorelik,J.,Korchev,Y.E.,Reilly,M.M.,Bitoun,M.,Shevchuk,A.CorrelativeSICM-FCMreveals changes in morphology and kinetics of endocytic pitsinduced by disease-associated mutations in dynamin

    Angular Approach Scanning Ion Conductance Microscopy

    No full text
    Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology

    Functional outcomes following robotic prostatectomy using athermal, traction free risk-stratified grades of nerve sparing.

    No full text
    OBJECTIVE: To report our unique approach for individualizing robotic prostate cancer surgery by risk stratification and sub classification of the periprostatic space into 4 distinct compartments, and thus performing 4 precise different grades of nerve sparing based on neurosurgical principles and to present updated potency and continence outcomes data of patients undergoing robotic-assisted laparoscopic prostatectomy (RALP) using our risk-stratified approach based on layers of periprostatic fascial dissection. PATIENTS AND METHODS: (1) Between January 2005 and December 2010, 2,536 men underwent RALP by a single surgeon at our institution. (2) Included patients were those with ≥ 1-year follow-up and were preoperatively continent and potent, defined as having a SHIM questionnaire score of >21; thus, the final number of patient in the study cohort was 1,335. (3) Postoperative potency was defined as the ability to have successful intercourse (score of ≥ 4 on question 2 of the SHIM); continence was defined as the use of no pads per 24 h. RESULTS: (1) The potency and continence for NS grades 1, 2, 3, and 4 were found to be 90.6, 76.2, 60.5, and 57.1 % (P < 0.001) and 98, 93.2, 90.1, and 88.9 % (P < 0.001), respectively. (2) The overall PSM rates for patients with NS grades 1, 2, 3, and 4 were 10.5, 7, 5.8, and 4.8 %, respectively (P = 0.064). CONCLUSIONS: The study found a correlation between risk-stratified grades of NS technique and continence and potency. Patients with lesser grades of NS had higher rates of potency and continence

    Palynology of Jurassic (Bathonian) sediments from Donbas, northeast Ukraine

    No full text
    A palynological and sedimentological study of an outcrop succession adjacent to the village of Kamyanka within the Kharkiv region of northeast Ukraine was carried out. The successions occur within the Dnieper–Donets Basin, which hosts vast successions (&gt; 20 km) of post mid- Devonian strata and is one of the main hydrocarbonproducing basins in Europe. Middle Jurassic sandstones, siltstones and claystones represent the sedimentary successions at the Kamyanska locality. Few palynological studies have been performed on the Jurassic of Ukraine and even fewer presented in the international literature. Thirty spore taxa and 21 pollen taxa were identified, together with taxa kept in open nomenclature (e.g. bisaccate pollen). Two palynological assemblages were identified within the Kamyanska succession (assemblages A and B) dated as Bathonian. Assemblage A is dominated by the fern spores (Cyathidites and Osmundacidites) and gymnosperm pollen produced by Cupressaceae Perinopollenites elatoides), ginkgophytes/Cycadales/Bennettitales (monosulcates) and Cheirolepidiaceae (Classopollis). Assemblage B differs in also comprising high abundances of Gleicheniidites and higher percentages of Pinuspollenites and Araucariacites compared to assemblage A. Another difference between the two units is the high relative abundance of seed fern pollen (Alisporites) in the upper part of assemblage B. The thermal alteration index (TAI) of the palynomorphs is estimated to range from 3 to 3.5, indicating a burial depth corresponding to the mature main phase of liquid petroleum and, to some extent, gas generation. Comparisons between the miospore and macrofloral assemblages show that the palynoflora and macroflora are strongly similar at broad taxonomic levels. Importantly, the miospore assemblages described here compare well with European Middle Jurassic assemblages indicating limited provincialism, with similar vegetation extending from eastern Ukraine and across most of Western Europe.The authors acknowledge the Karazin Kharkiv National University, the host organisation of the 100th anniversary of V.P. Makrydin during which the samples were collected. This is a contribution to the UNESCO/IGCP project 632, Continental Crises of the Jurassic: Major Extinction Events and Environmental Changes Within Lacustrine Ecosystems. The authors further acknowledge the support of the Swedish Research Council (Research links, 2013-6702), for O.S. and V.V. and that of Lund University Carbon Centre (LUCCI) for S.S. and V.V.</p
    corecore