39 research outputs found

    Modelling impacts of seasonal wastewater treatment plant effluent permits and biosolid substitution for phosphorus management in catchments and river systems

    Get PDF
    The issues of diffuse and point source phosphorus (P) pollution in river systems are presented using a catchment model to assess nutrient behaviour, seasonal effluent standards and biosolid substitution. A process-based, dynamic water quality model (INCA-P) has been applied to four UK catchments, namely, the Rivers Tywi, Wensum, Lunan and Hampshire Avon, to simulate water fluxes, sediments, total phosphorus and soluble reactive phosphorus (SRP) concentrations. The model has been used to assess impacts of both agricultural runoff and point P sources from wastewater treatment plants (WWTPs) on water quality. With increasing costs for P fertilizer and P reduction at WWTPs, a strategy of recycling P from WWTPs as biosolids to substitute for fertilizers in vulnerable catchments has been investigated. Significant reductions in P concentrations are achieved if this substitution were implemented on a large scale. Reductions in SRP of between 6% and 41% can be achieved using this strategy. The effects of implementing new WWTP standards are shown to reduce SRP by 30%. Seasonal consent standards applied in only summer months could reduce SRP by 53% and achieve a substantial reduction in treatment costs year round

    Regulation of melanosome number, shape and movement in the zebrafish retinal pigment epithelium by OA1 and PMEL.

    Get PDF
    Analysis of melanosome biogenesis in the retinal pigment epithelium (RPE) is challenging because it occurs predominantly in a short embryonic time window. Here, we show that the zebrafish provides an ideal model system for studying this process because in the RPE the timing of melanosome biogenesis facilitates molecular manipulation using morpholinos. Morpholino-mediated knockdown of OA1 (also known as GPR143), mutations in the human homologue of which cause the most common form of human ocular albinism, induces a major reduction in melanosome number, recapitulating a key feature of the mammalian disease where reduced melanosome numbers precede macromelanosome formation. We further show that PMEL, a key component of mammalian melanosome biogenesis, is required for the generation of cylindrical melanosomes in zebrafish, which in turn is required for melanosome movement into the apical processes and maintenance of photoreceptor integrity. Spherical and cylindrical melanosomes containing similar melanin volumes co-exist in the cell body but only cylindrical melanosomes enter the apical processes. Taken together, our findings indicate that melanosome number and shape are independently regulated and that melanosome shape controls a function in the RPE that depends on localisation in the apical processes

    Is the water footprint an appropriate tool for forestry and forest products: The Fennoscandian case

    Get PDF
    The water footprint by the Water Footprint Network (WF) is an ambitious tool for measuring human appropriation and promoting sustainable use of fresh water. Using recent case studies and examples from water-abundant Fennoscandia, we consider whether it is an appropriate tool for evaluating the water use of forestry and forest-based products. We show that aggregating catchment level water consumption over a product life cycle does not consider fresh water as a renewable resource and is inconsistent with the principles of the hydrologic cycle. Currently, the WF assumes that all evapotranspiration (ET) from forests is a human appropriation of water although ET from managed forests in Fennoscandia is indistinguishable from that of unmanaged forests. We suggest that ET should not be included in the water footprint of rain-fed forestry and forest-based products. Tools for sustainable water management should always contextualize water use and water impacts with local water availability and environmental sensitivity

    Evaluating the properties, fate and individual-to-ecosystem level impacts of contrasting microplastics in freshwaters

    Get PDF
    Microplastic particles (MPs) are fragments, fibres and other shapes derived from plastic polymers in the size range of 1–5 000 μm. Concern about the environmental impacts of MPs and their implications for human wellbeing has never been higher. Unfortunately, growth in the empirical understanding of the dynamics and impacts of MPs lags behind. This hinders the capacity of scientists, managers and policymakers to address public concerns about the true level of risk posed by MPs, and to develop effective management, policy and governance strategies for eliminating or reducing those risks. Research on the behaviour and impacts of MPs in freshwater ecosystems is especially deficient, despite their vulnerability to inputs of plastic waste (e.g. via storm water and other terrestrial runoff), and their capacity to act as key transport pathways through the landscape. This represents a substantial black box in our understanding of the dynamics of MPs from inland to the ocean. In seven research activities (5 mesocosm experiments, 1 field study and 1 literature review) we addressed two broad research questions :a) Initial fate and environmental interactions of MP particles in streams, including biofilm formation and sorption of chemical stressors b) Ecological impacts of MPs on resource consumption, growth and survival of organisms, and on key ecosystem processes. Among our key results addressing the initial fate and biofilm formation of MP particles, we found that (i) biofilm formation generally made denser particles more buoyant and caused more buoyant particles to sink faster, (ii) biofilms on polystyrene MPs supported more cyanobacteria than other polymers, and (iii) aquatic macrophytes increase MP retention by up to 94 %. Among our key results addressing the ecological impacts of MPs, we found that almost all MP shapes and polymers studied had one or more effects on stream microbial organisms and associated ecosystem processes (e.g. microbial respiration, detritus breakdown), and/or on the life history of a model macroinvertebrate detritivore. We also provide evidence that effects of MPs on microbial organisms can propagate up food-chains to affect consumer growth and fat storage. Some MP impacts were similar to those of naturally occurring organic and inorganic particles, whilst others represented a risk over and above that associated with natural particles. The number of MP impacts detected in our experiments provides sufficient basis for “moving beyond the precautionary principle” when motivating a need for monitoring and management – there is now sufficient evidence that MPs alter key aspects of the functioning of stream benthic food webs to motivate a need for action. Based on our results, we further provide a series of recommendations for monitoring, policy and management targeting MPs, and for future research

    Receptor Sorting within Endosomal Trafficking Pathway Is Facilitated by Dynamic Actin Filaments

    Get PDF
    Early endosomes (EEs) are known to be a sorting station for internalized molecules destined for degradation, recycling, or other intracellular organelles. Segregation is an essential step in such sorting, but the molecular mechanism of this process remains to be elucidated. Here, we show that actin is required for efficient recycling and endosomal maturation by producing a motile force. Perturbation of actin dynamics by drugs induced a few enlarged EEs containing several degradative vacuoles and also interfered with their transporting ability. Actin repolymerization induced by washout of the drug caused the vacuoles to dissociate and individually translocate toward the perinuclear region. We further elucidated that cortactin, an actin-nucleating factor, was required for transporting contents from within EEs. Actin filaments regulated by cortactin may provide a motile force for efficient sorting within early endosomes. These data suggest that actin filaments coordinate with microtubules to mediate segregation in EEs

    A Genome-Wide Immunodetection Screen in S. cerevisiae Uncovers Novel Genes Involved in Lysosomal Vacuole Function and Morphology

    Get PDF
    Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface – ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY). Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes – MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events
    corecore