5,958 research outputs found
Quantum Key Distribution
This chapter describes the application of lasers, specifically diode lasers,
in the area of quantum key distribution (QKD). First, we motivate the
distribution of cryptographic keys based on quantum physical properties of
light, give a brief introduction to QKD assuming the reader has no or very
little knowledge about cryptography, and briefly present the state-of-the-art
of QKD. In the second half of the chapter we describe, as an example of a
real-world QKD system, the system deployed between the University of Calgary
and SAIT Polytechnic. We conclude the chapter with a brief discussion of
quantum networks and future steps.Comment: 20 pages, 12 figure
New Angle on the Strong CP and Chiral Symmetry Problems from a Rotating Mass Matrix
It is shown that when the mass matrix changes in orientation (rotates) in
generation space for changing energy scale, then the masses of the lower
generations are not given just by its eigenvalues. In particular, these masses
need not be zero even when the eigenvalues are zero. In that case, the strong
CP problem can be avoided by removing the unwanted term by a chiral
transformation in no contradiction with the nonvanishing quark masses
experimentally observed. Similarly, a rotating mass matrix may shed new light
on the problem of chiral symmetry breaking. That the fermion mass matrix may so
rotate with scale has been suggested before as a possible explanation for
up-down fermion mixing and fermion mass hierarchy, giving results in good
agreement with experiment.Comment: 14 page
A Solution of the Strong CP Problem Transforming the theta-angle to the KM CP-violating Phase
It is shown that in the scheme with a rotating fermion mass matrix (i.e. one
with a scale-dependent orientation in generation space) suggested earlier for
explaining fermion mixing and mass hierarchy, the theta-angle term in the QCD
action of topological origin can be eliminated by chiral transformations, while
giving still nonzero masses to all quarks. Instead, the effects of such
transformations get transmitted by the rotation to the CKM matrix as the KM
phase giving, for of order unity, a Jarlskog invariant typically of
order as experimentally observed. Strong and weak CP violations
appear then as just two facets of the same phenomenon.Comment: 14 pages, 2 figure
Lagrangian bias in the local bias model
It is often assumed that the halo-patch fluctuation field can be written as a
Taylor series in the initial Lagrangian dark matter density fluctuation field.
We show that if this Lagrangian bias is local, and the initial conditions are
Gaussian, then the two-point cross-correlation between halos and mass should be
linearly proportional to the mass-mass auto-correlation function. This
statement is exact and valid on all scales; there are no higher order
contributions, e.g., from terms proportional to products or convolutions of
two-point functions, which one might have thought would appear upon truncating
the Taylor series of the halo bias function. In addition, the auto-correlation
function of locally biased tracers can be written as a Taylor series in the
auto-correlation function of the mass; there are no terms involving, e.g.,
derivatives or convolutions. Moreover, although the leading order coefficient,
the linear bias factor of the auto-correlation function is just the square of
that for the cross-correlation, it is the same as that obtained from expanding
the mean number of halos as a function of the local density only in the
large-scale limit. In principle, these relations allow simple tests of whether
or not halo bias is indeed local in Lagrangian space. We discuss why things are
more complicated in practice. We also discuss our results in light of recent
work on the renormalizability of halo bias, demonstrating that it is better to
renormalize than not. We use the Lognormal model to illustrate many of our
findings.Comment: 14 pages, published on JCA
Prolonged exposure to bacterial toxins downregulated expression of toll-like receptors in mesenchymal stromal cell-derived osteoprogenitors
Background: Human mesenchymal stromal cells (MSCs, also known as mesenchymal stem cells) are multipotent cells with potential therapeutic value. Owing to their osteogenic capability, MSCs may be clinically applied for facilitating osseointegration in dental implants or orthopedic repair of bony defect. However, whether wound infection or oral microflora may interfere with the growth and osteogenic differentiation of human MSCs remains unknown. This study investigated whether proliferation and osteogenic differentiation of MSCs would be affected by potent gram-positive and gram-negative derived bacterial toxins commonly found in human settings. Results: We selected lipopolysaccharide (LPS) from Escherichia coli and lipoteichoic acid (LTA) from Streptococcus pyogenes as our toxins of choice. Our findings showed both LPS and LTA did not affect MSC proliferation, but prolonged LPS challenge upregulated the osteogenic differentiation of MSCs, as assessed by alkaline phosphatase activity and calcium deposition. Because toll-like receptors (TLRs), in particularly TLR4 and TLR2, are important for the cellular responsiveness to LPS and LTA respectively, we evaluated their expression profiles serially from MSCs to osteoblasts by quantitative PCR. We found that during osteogenic differentiation, MSC-derived osteoprogenitors gradually expressed TLR2 and TLR4 by Day 12. But under prolonged incubation with LPS, MSC-derived osteoprogenitors had reduced TLR2 and TLR4 gene expression. This peculiar response to LPS suggests a possible adaptive mechanism when MSCs are subjected to continuous exposure with bacteria. Conclusion: In conclusion, our findings support the potential of using human MSCs as a biological graft, even under a bacterial toxin-rich environment. © 2008 Mo et al; licensee BioMed Central Ltd.published_or_final_versio
Simulation, visualization and dosimetric validation of scatter radiation distribution under fluoroscopy settings
2015-2016 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
Gravity and Large-Scale Non-local Bias
The relationship between galaxy and matter overdensities, bias, is most often
assumed to be local. This is however unstable under time evolution, we provide
proofs under several sets of assumptions. In the simplest model galaxies are
created locally and linearly biased at a single time, and subsequently move
with the matter (no velocity bias) conserving their comoving number density (no
merging). We show that, after this formation time, the bias becomes unavoidably
non-local and non-linear at large scales. We identify the non-local
gravitationally induced fields in which the galaxy overdensity can be expanded,
showing that they can be constructed out of the invariants of the deformation
tensor (Galileons). In addition, we show that this result persists if we
include an arbitrary evolution of the comoving number density of tracers. We
then include velocity bias, and show that new contributions appear, a dipole
field being the signature at second order. We test these predictions by
studying the dependence of halo overdensities in cells of fixed matter density:
measurements in simulations show that departures from the mean bias relation
are strongly correlated with the non-local gravitationally induced fields
identified by our formalism. The effects on non-local bias seen in the
simulations are most important for the most biased halos, as expected from our
predictions. The non-locality seen in the simulations is not fully captured by
assuming local bias in Lagrangian space. Accounting for these effects when
modeling galaxy bias is essential for correctly describing the dependence on
triangle shape of the galaxy bispectrum, and hence constraining cosmological
parameters and primordial non-Gaussianity. We show that using our formalism we
remove an important systematic in the determination of bias parameters from the
galaxy bispectrum, particularly for luminous galaxies. (abridged)Comment: 26 pages, 9 figures. v2: improved appendix
- …
