658 research outputs found
Effects of riparian plant diversity loss on aquatic microbial decomposers become more pronounced at longer times
We examined the potential long-term impacts of riparian plant diversity loss on diversity and activity of aquatic microbial decomposers. Microbial assemblages were obtained
in a mixed-forest stream by immersion of mesh bags contain-ing three leaf species (alder, oak and eucalyptus), commonly
found in riparian corridors of Iberian streams. Simulation of
species loss was done in microcosms by including a set of all
leaf species, retrieved from the stream, and non-colonized
leaves of three, two or one leaf species. Leaves were renewed
every month throughout six months, and microbial inoculum
was ensured by a set of colonized leaves from the previous
month. Microbial diversity, leaf mass loss and fungal biomass
were assessed at the second and sixth months after plant
species loss. Molecular diversity of fungi and bacteria, as the
total number of operational taxonomic units per leaf diversity
treatment, decreased with leaf diversity loss. Fungal biomass
tended to decrease linearly with leaf species loss on oak and
eucalyptus, suggesting more pronounced effects of leaf diver-sity on lower quality leaves. Decomposition of alder and
eucalyptus leaves was affected by leaf species identity, mainly
after longer times following diversity loss. Leaf decomposi-tion of alder decreased when mixed with eucalyptus, while
decomposition of eucalyptus decreased in mixtures with oak.
Results suggest that the effects of leaf diversity on microbial
decomposers depended on leaf species number and also on
which species were lost from the system, especially after
longer times. This may have implications for the management
of riparian forests to maintain stream ecosystem functioning.FEDER-POFC-COMPETE and the Portuguese
Foundation for Science and Technology supported this study (PEst-C/
BIA/UI4050/2011, PTDC/AAC-AMB/113746/2009 and PTDC/AAC-AMB/117068/2010), S. Duarte (SFRH/BPD/47574/2008) and I.
Fernandes (SFRH/BD/42215/2007)
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation
We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis
Effects of cadmium and phenanthrene mixtures on aquatic fungi and microbially mediated leaf litter decomposition
This version does not correspond to the published one. To access the final version go to: http://www.springerlink.com/content/t8t302617003m078/Urbanization and industrial activities have contributed to widespread contamination by metals and polycyclic aromatic hydrocarbons, but the combined effects of these toxics on aquatic biota and processes are poorly understood. We examined the effects of cadmium (Cd) and phenanthrene on the activity and diversity of fungi associated with decomposing leaf litter in streams. Leaves of Alnus glutinosa were immersed for 10 days in an unpolluted low-order stream in northwest Portugal to allow microbial colonization. Leaves were then exposed in microcosms for 14 days to Cd (0.06–4.5 mg L−1) and phenanthrene (0.2 mg L−1) either alone or in mixture. A total of 19 aquatic hyphomycete species were found sporulating on leaves during the whole study. The dominant species was Articulospora tetracladia, followed by Alatospora pulchella, Clavatospora longibrachiata, and Tetrachaetum elegans. Exposure to Cd and phenanthrene decreased the contribution of A. tetracladia to the total conidial production, whereas it increased that of A. pulchella. Fungal diversity, assessed as denaturing gradient gel electrophoresis fingerprinting or conidial morphology, was decreased by the exposure to Cd and/or phenanthrene. Moreover, increased Cd concentrations decreased leaf decomposition and fungal reproduction but did not inhibit fungal biomass production. Exposure to phenanthrene potentiated the negative effects of Cd on fungal diversity and activity, suggesting that the co-occurrence of these stressors may pose additional risk to aquatic biodiversity and stream ecosystem functioning.The Portuguese Foundation for the Science and Technology supported this work (POCI/MAR/56964/2004) and S. Duarte (SFRH/BPD/47574/2008
Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown.
Aquatic hyphomycetes play an essential role in the decomposition of allochthonous organic matter which is a fundamental process driving the functioning of forested headwater streams. We studied the effect of anthropogenic acidification on aquatic hyphomycetes associated with decaying leaves of Fagus sylvatica in six forested headwater streams (pH range, 4.3-7.1). Non-metric multidimensional scaling revealed marked differences in aquatic hyphomycete assemblages between acidified and reference streams. We found strong relationships between aquatic hyphomycete richness and mean Al concentration (r = -0.998, p < 0.0001) and mean pH (r = 0.962, p < 0.002), meaning that fungal diversity was severely depleted in acidified streams. By contrast, mean fungal biomass was not related to acidity. Leaf breakdown rate was drastically reduced under acidic conditions raising the issue of whether the functioning of headwater ecosystems could be impaired by a loss of aquatic hyphomycete species
Scaling properties of protein family phylogenies
One of the classical questions in evolutionary biology is how evolutionary
processes are coupled at the gene and species level. With this motivation, we
compare the topological properties (mainly the depth scaling, as a
characterization of balance) of a large set of protein phylogenies with a set
of species phylogenies. The comparative analysis shows that both sets of
phylogenies share remarkably similar scaling behavior, suggesting the
universality of branching rules and of the evolutionary processes that drive
biological diversification from gene to species level. In order to explain such
generality, we propose a simple model which allows us to estimate the
proportion of evolvability/robustness needed to approximate the scaling
behavior observed in the phylogenies, highlighting the relevance of the
robustness of a biological system (species or protein) in the scaling
properties of the phylogenetic trees. Thus, the rules that govern the
incapability of a biological system to diversify are equally relevant both at
the gene and at the species level.Comment: Replaced with final published versio
Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae
Abstract Genome-scale metabolic models (GEMs) can be used to evaluate genotype-phenotype relationships and their application to microbial strain engineering is increasing in popularity. Some of the algorithms used to simulate the phenotypes of mutant strains require the determination of a wild-type flux distribution. However, the accuracy of this reference, when calculated with flux balance analysis, has not been studied in detail before. Here, the wild-type simulations of selected GEMs for Saccharomyces cerevisiae have been analysed and most of the models tested predicted erroneous fluxes in central pathways, especially in the pentose phosphate pathway. Since the problematic fluxes were mostly related to areas of the metabolism consuming or producing NADPH/NADH, we have manually curated all reactions including these cofactors by forcing the use of NADPH/NADP+ in anabolic reactions and NADH/NAD+ for catabolic reactions. The curated models predicted more accurate flux distributions and performed better in the simulation of mutant phenotypes.FCT -Fuel Cell Technologies Program(SFRH/BD/51111/2010
Effects of superstructure environment on galaxy groups
We analyse properties of galaxy groups and their dependence on the large-scale environment as defined by superstructures. We find that group–galaxy cross–correlations depend only on group properties regardless the groups reside in superstructures. This indicates that the total galaxy density profile around groups is independent of the global environment. At a given global luminosity, a proxy to group total mass, groups have a larger stellar mass content by a factor 1.3, a relative excess independent of the group luminosity. Groups in superstructures have 40 per cent higher velocity dispersions and systematically larger minimal enclosing radii. We also find that the stellar population of galaxies in groups in superstructures is systematically older as infered from the galaxy spectra Dn 4000 parameter. Although the galaxy number density profile of groups is independent of environment, the star–formation rate and stellar mass profile of the groups residing in superstructures differs from groups elsewhere. For groups residing in superstructures, the combination of a larger stellar mass content and star–formation rate produces a larger time–scale for star formation regardless the distance to the group center. Our results provide evidence that groups in superstructures formed earlier than elsewhere, as expected in the assembly bias scenario.publishedVersio
Recent advances in solid-state organic lasers
Organic solid-state lasers are reviewed, with a special emphasis on works
published during the last decade. Referring originally to dyes in solid-state
polymeric matrices, organic lasers also include the rich family of organic
semiconductors, paced by the rapid development of organic light emitting
diodes. Organic lasers are broadly tunable coherent sources are potentially
compact, convenient and manufactured at low-costs. In this review, we describe
the basic photophysics of the materials used as gain media in organic lasers
with a specific look at the distinctive feature of dyes and semiconductors. We
also outline the laser architectures used in state-of-the-art organic lasers
and the performances of these devices with regard to output power, lifetime,
and beam quality. A survey of the recent trends in the field is given,
highlighting the latest developments in terms of wavelength coverage,
wavelength agility, efficiency and compactness, or towards integrated low-cost
sources, with a special focus on the great challenges remaining for achieving
direct electrical pumping. Finally, we discuss the very recent demonstration of
new kinds of organic lasers based on polaritons or surface plasmons, which open
new and very promising routes in the field of organic nanophotonics
New evidence for habitat specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers
Eelgrass Zostera marina is an ecosystem-engineering species of outstanding importance for coastal soft sediment habitats that lives in widely diverging habitats. Our first goal was to detect divergent selection and habitat adaptation at the molecular genetic level; hence, we compared three pairs of permanently submerged versus intertidal populations using genome scans, a genetic marker-based approach. Three different statistical approaches for outlier identification revealed divergent selection at 6 loci among 46 markers (6 SNPs, 29 EST microsatellites and 11 anonymous microsatellites). These outlier loci were repeatedly detected in parallel habitat comparisons, suggesting the influence of habitat-specific selection. A second goal was to test the consistency of the general genome scan approach by doubling the number of gene-linked microsatellites and adding single nucleotide polymorphism (SNP) loci, a novel marker type for seagrasses, compared to a previous study. Reassuringly, results with respect to selection were consistent among most marker loci. Functionally interesting marker loci were linked to genes involved in osmoregulation and water balance, suggesting different osmotic stress, and reproductive processes (seed maturation), pointing to different life history strategies. The identified outlier loci are valuable candidates for further investigation into the genetic basis of natural selection
- …
