564 research outputs found
Quantum dynamics in strong fluctuating fields
A large number of multifaceted quantum transport processes in molecular
systems and physical nanosystems can be treated in terms of quantum relaxation
processes which couple to one or several fluctuating environments. A thermal
equilibrium environment can conveniently be modelled by a thermal bath of
harmonic oscillators. An archetype situation provides a two-state dissipative
quantum dynamics, commonly known under the label of a spin-boson dynamics. An
interesting and nontrivial physical situation emerges, however, when the
quantum dynamics evolves far away from thermal equilibrium. This occurs, for
example, when a charge transferring medium possesses nonequilibrium degrees of
freedom, or when a strong time-dependent control field is applied externally.
Accordingly, certain parameters of underlying quantum subsystem acquire
stochastic character. Herein, we review the general theoretical framework which
is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows
one to investigate on a common basis the influence of nonequilibrium
fluctuations and periodic electrical fields on quantum transport processes.
Most importantly, such strong fluctuating fields induce a whole variety of
nonlinear and nonequilibrium phenomena. A characteristic feature of such
dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance
The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source
X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases
Spatiotemporal DNA methylome dynamics of the developing mouse fetus
Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders
Distinct genetic architectures and environmental factors associate with host response to the γ2-herpesvirus infections
Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr Virus (EBV) establish life-long infections and are associated with malignancies. Striking geographic variation in incidence and the fact that virus alone is insufficient to cause disease, suggests other co-factors are involved. Here we present epidemiological analysis and genome-wide association study (GWAS) in 4365 individuals from an African population cohort, to assess the influence of host genetic and non-genetic factors on virus antibody responses. EBV/KSHV co-infection (OR = 5.71(1.58–7.12)), HIV positivity (OR = 2.22(1.32–3.73)) and living in a more rural area (OR = 1.38(1.01–1.89)) are strongly associated with immunogenicity. GWAS reveals associations with KSHV antibody response in the HLA-B/C region (p = 6.64 × 10−09). For EBV, associations are identified for VCA (rs71542439, p = 1.15 × 10−12). Human leucocyte antigen (HLA) and trans-ancestry fine-mapping substantiate that distinct variants in HLA-DQA1 (p = 5.24 × 10−44) are driving associations for EBNA-1 in Africa. This study highlights complex interactions between KSHV and EBV, in addition to distinct genetic architectures resulting in important differences in pathogenesis and transmission
Interpreting transcriptional changes using causal graphs: new methods and their practical utility on public networks
Whole-genome association study of antibody response to Epstein-Barr virus in an African population: a pilot.
Epstein Barr virus (EBV) infects 95% of the global population and is associated with up to 2% of cancers globally. Immunoglobulin G (IgG) antibody levels to EBV have been shown to be heritable and associated with developing malignancies. We, therefore, performed a pilot genome-wide association analysis of anti-EBV IgG traits in an African population, using a combined approach including array genotyping, whole-genome sequencing and imputation to a panel with African sequence data. In 1562 Ugandans, we identify a variant in human leukocyte antigen (HLA)-DQA1, rs9272371 (p = 2.6 × 10-17) associated with anti-EBV nuclear antigen-1 responses. Trans-ancestry meta-analysis and fine-mapping with European-ancestry individuals suggest the presence of distinct HLA class II variants driving associations in Uganda. In addition, we identify four putative, novel, very rare African-specific loci with preliminary evidence for association with anti-viral capsid antigen IgG responses which will require replication for validation. These findings reinforce the need for the expansion of such studies in African populations with relevant datasets to capture genetic diversity.This GPC is jointly funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement. Further funding was obtained from the Wellcome Trust (WT098051 and WT090132), the UK Medical Research Council and with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E
Solar Radiation and Tidal Exposure as Environmental Drivers of Enhalus acoroides Dominated Seagrass Meadows
There is strong evidence of a global long-term decline in seagrass meadows that is widely attributed to anthropogenic activity. Yet in many regions, attributing these changes to actual activities is difficult, as there exists limited understanding of the natural processes that can influence these valuable ecosystem service providers. Being able to separate natural from anthropogenic causes of seagrass change is important for developing strategies that effectively mitigate and manage anthropogenic impacts on seagrass, and promote coastal ecosystems resilient to future environmental change. The present study investigated the influence of environmental and climate related factors on seagrass biomass in a large ≈250 ha meadow in tropical north east Australia. Annual monitoring of the intertidal Enhalus acoroides (L.f.) Royle seagrass meadow over eleven years revealed a declining trend in above-ground biomass (54% significant overall reduction from 2000 to 2010). Partial Least Squares Regression found this reduction to be significantly and negatively correlated with tidal exposure, and significantly and negatively correlated with the amount of solar radiation. This study documents how natural long-term tidal variability can influence long-term seagrass dynamics. Exposure to desiccation, high UV, and daytime temperature regimes are discussed as the likely mechanisms for the action of these factors in causing this decline. The results emphasise the importance of understanding and assessing natural environmentally-driven change when interpreting the results of seagrass monitoring programs
Quantifying the Proteolytic Release of Extracellular Matrix-Sequestered VEGF with a Computational Model
BACKGROUND: VEGF proteolysis by plasmin or matrix metalloproteinases (MMPs) is believed to play an important role in regulating vascular patterning in vivo by releasing VEGF from the extracellular matrix (ECM). However, a quantitative understanding of the kinetics of VEGF cleavage and the efficiency of cell-mediated VEGF release is currently lacking. To address these uncertainties, we develop a molecular-detailed quantitative model of VEGF proteolysis, used here in the context of an endothelial sprout. METHODOLOGY AND FINDINGS: To study a cell's ability to cleave VEGF, the model captures MMP secretion, VEGF-ECM binding, VEGF proteolysis from VEGF165 to VEGF114 (the expected MMP cleavage product of VEGF165) and VEGF receptor-mediated recapture. Using experimental data, we estimated the effective bimolecular rate constant of VEGF165 cleavage by plasmin to be 328 M(-1) s(-1) at 25 degrees C, which is relatively slow compared to typical MMP-ECM proteolysis reactions. While previous studies have implicated cellular proteolysis in growth factor processing, we show that single cells do not individually have the capacity to cleave VEGF to any appreciable extent (less than 0.1% conversion). In addition, we find that a tip cell's receptor system will not efficiently recapture the cleaved VEGF due to an inability of cleaved VEGF to associate with Neuropilin-1. CONCLUSIONS: Overall, VEGF165 cleavage in vivo is likely to be mediated by the combined effect of numerous cells, instead of behaving in a single-cell-directed, autocrine manner. We show that heparan sulfate proteoglycans (HSPGs) potentiate VEGF cleavage by increasing the VEGF clearance time in tissues. In addition, we find that the VEGF-HSPG complex is more sensitive to proteases than is soluble VEGF, which may imply its potential relevance in receptor signaling. Finally, according to our calculations, experimentally measured soluble protease levels are approximately two orders of magnitude lower than that needed to reconcile levels of VEGF cleavage seen in pathological situations
- …
