3,175 research outputs found

    Rag GTPases are cardioprotective by regulating lysosomal function.

    Get PDF
    The Rag family proteins are Ras-like small GTPases that have a critical role in amino-acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases, although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised owing to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection

    Nanopores of carbon nanotubes as practical hydrogen storage media

    Get PDF
    We report on hydrogen desorption mechanisms in the nanopores of multiwalled carbon nanotubes (MWCNTs). The as-grown MWCNTs show continuous walls that do not provide sites for hydrogen storage under ambient conditions. However, after treating the nanotubes with oxygen plasma to create nanopores in the MWCNTs, we observed the appearance of a new hydrogen desorption peak in the 300–350 K range. Furthermore, the calculations of density functional theory and molecular dynamics simulations confirmed that this peak could be attributed to the hydrogen that is physically adsorbed inside nanopores whose diameter is approximately 1 nm. Thus, we demonstrated that 1 nm nanopores in MWCNTs offer a promising route to hydrogen storage media for onboard practical applications

    Multilocus sequence analysis of phylogroup 1 and 2 oral treponeme strains

    Get PDF
    More than 75 ‘species-level' phylotypes of spirochete bacteria belonging to the genus Treponema reside within the human oral cavity. The majority of these oral treponeme phylotypes correspond to as-yet uncultivated taxa, or strains of uncertain standing in taxonomy. Here, we analyze phylogenetic and taxonomic relationships between oral treponeme strains using a multilocus sequence analysis (MLSA) scheme based on the highly-conserved 16S rRNA, pyrH, recA and flaA genes. We utilize this MLSA scheme to analyze genetic data from a curated collection of oral treponeme strains (n=71) of diverse geographical origins. This comprises phylogroup 1 (n=23) and phylogroup 2 (n=48) treponeme strains; including all relevant ATCC reference strains. The taxonomy of all strains was confirmed or inferred via the analysis of ca. 1,450 bp 16S rRNA gene sequences using a combination of bioinformatic and phylogenetic approaches. Taxonomic and phylogenetic relationships between the respective treponeme strains were further investigated by analyzing individual and concatenated flaA (1,074 nt), recA (1,377 nt) and pyrH (696 nt) gene sequence datasets. Our data confirmed the species differentiation between Treponema denticola (n=41) and Treponema putidum (n=7) strains. Notably, our results clearly supported the differentiation of the 23 phylogroup 1 treponeme strains into 5 distinct ‘species-level' phylotypes. These respectively corresponded to ‘Treponema vincentii' (n=11), Treponema medium (n=1); ‘Treponema sinensis' (T. sp. IA; n=4); Treponema sp. IB (n=3); and Treponema sp. IC (n=4). In conclusion, our MLSA-based approach can be used to effectively discriminate oral treponeme taxa, confirm taxonomic assignment, and enable the delineation of species boundaries with high confidence.published_or_final_versio

    MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway.

    Get PDF
    The Hippo pathway plays a central role in tissue homoeostasis, and its dysregulation contributes to tumorigenesis. Core components of the Hippo pathway include a kinase cascade of MST1/2 and LATS1/2 and the transcription co-activators YAP/TAZ. In response to stimulation, LATS1/2 phosphorylate and inhibit YAP/TAZ, the main effectors of the Hippo pathway. Accumulating evidence suggests that MST1/2 are not required for the regulation of YAP/TAZ. Here we show that deletion of LATS1/2 but not MST1/2 abolishes YAP/TAZ phosphorylation. We have identified MAP4K family members--Drosophila Happyhour homologues MAP4K1/2/3 and Misshapen homologues MAP4K4/6/7-as direct LATS1/2-activating kinases. Combined deletion of MAP4Ks and MST1/2, but neither alone, suppresses phosphorylation of LATS1/2 and YAP/TAZ in response to a wide range of signals. Our results demonstrate that MAP4Ks act in parallel to and are partially redundant with MST1/2 in the regulation of LATS1/2 and YAP/TAZ, and establish MAP4Ks as components of the expanded Hippo pathway

    Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life

    Get PDF
    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core–shell structures (Ni:Li_2O), whereas subsequent delithiation causes Ni:Li_2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni^(2+) of the nanocrystal changes during lithiation–delithiation through Ni^0 and back to Ni^(2+). These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles

    Predictions of Quasar Clustering: Redshift, Luminosity and Selection Dependence

    Full text link
    We show that current clustering observations of quasars and luminous AGN can be explained by a merger model augmented by feedback from outflows. Using numerical simulations large enough to study clustering out to 25 comoving h^{-1} Mpc, we calculate correlation functions, biases, and correlation lengths as a function of AGN redshift and optical and X-ray luminosity. At optical wavelengths, our results match a wide range of current observations and generate predictions for future data sets. We reproduce the weak luminosity dependence of clustering over the currently well-measured range, and predict a much stronger dependence at higher luminosities. The increase in the amplitude of binary quasar clustering observed in the Sloan Digital Sky Survey (SDSS) is also reproduced and is predicted to occur at higher redshift, an effect that is due to the one halo term in the correlation function. On the other hand, our results do not match the rapid evolution of the correlation length observed in the SDSS at z\simeq 3, a discrepancy that is at least partially due to differences in the scales probed by our simulation versus this survey. In fact, we show that changing the distances sampled from our simulations can produce changes as large as 40% in the fitted correlation lengths. Finally, in the X-ray, our simulations produce correlation lengths similar to that observed in the Chandra Deep Field (CDF) North, but not the significantly larger correlation length observed in the CDF South.Comment: 13 page, 7 figures. Accepted for publication in Ap

    Modelling non-dust fluids in cosmology

    Full text link
    Currently, most of the numerical simulations of structure formation use Newtonian gravity. When modelling pressureless dark matter, or `dust', this approach gives the correct results for scales much smaller than the cosmological horizon, but for scenarios in which the fluid has pressure this is no longer the case. In this article, we present the correspondence of perturbations in Newtonian and cosmological perturbation theory, showing exact mathematical equivalence for pressureless matter, and giving the relativistic corrections for matter with pressure. As an example, we study the case of scalar field dark matter which features non-zero pressure perturbations. We discuss some problems which may arise when evolving the perturbations in this model with Newtonian numerical simulations and with CMB Boltzmann codes.Comment: 5 pages; v2: typos corrected and refs added, submitted version; v3: version to appear in JCA

    The Demography of Super-Massive Black Holes: Growing Monsters at the Heart of Galaxies

    Full text link
    Supermassive black holes (BHs) appear to be ubiquitous at the center of all galaxies which have been observed at high enough sensitivities and resolution with the Hubble Space Telescope. Their masses are found to be tightly linked with the masses and velocity dispersions of their host galaxies. On the other hand, BHs are widely held to constitute the central engines of quasars and active galactic nuclei (AGN) in general. It is however still unclear how BHs have grown, and whether they have co-evolved with their hosts. In this Review I discuss how, in ways independent of specific models, constraints on the growth history of BHs and their host galaxies have been set by matching the statistics of local BHs to the emissivity, number density, and clustering properties of AGNs at different cosmological epochs. I also present some new results obtained through a novel numerical code which evolves the BH mass function and clustering adopting broad distributions of Eddington ratios. I finally review BH evolution in a wider cosmological context, connecting BH growth to galaxy evolution.Comment: 70 pages. New Astronomy Reviews, in pres
    corecore