2,301 research outputs found

    Modeling of Non-Isothermal Cryogenic Fluid Sloshing

    Get PDF
    A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales

    Preliminary Simulations of the Ullage Dynamics in Microgravity during the Jet Mixing Portion of Tank Pressure Control Experiments

    Get PDF
    The results of CFD simulations of microgravity tank pressure control experiments performed on the Space Shuttle are presented. A 13.7 liter acrylic model tank was used in these experiments. The tank was filled to an 83 percent fill fraction with Freon refrigerant to simulate cryogenic propellants stored in space. In the experiments, a single liquid jet near the bottom of the tank was used for mixing the tank. Simulations at a range of jet Weber numbers were performed. Qualitative comparisons of the liquid and gas interface dynamics observed and recorded in the experiments and those computed are shown and discussed. The simulations were able to correctly capture jet penetration of the ullage, qualitatively reproduce ullage shapes and dynamics, as well as the final equilibrium position of the ullage

    Civil Society and Its Institutional Context in CEE

    Get PDF
    Although civil societies in Central and Eastern Europe are often portrayed as similar, united by a shared communist past, they have developed along increasingly divergent trajectories over the past three decades. This article investigates the current state of civil society in the region and the role the institutional context plays in it. Drawing on historical institutionalism and the process of European integration, we classify the 14 countries under investigation into three distinct groups and analyze data from a survey of more than 350 local civil society experts. We find that, together with domestic governments, international donors and the EU are perceived as the most influential institutional actors for civil society organizations. Their respective influences, however, depend largely on a country's stage in the EU accession process. Overall, the study provides a differentiated mapping of civil society in this region and a better understanding of how the institutional context relates to a Country's civil society

    Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Get PDF
    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development

    A Spreadsheet for the Mixing of Rows of Jets with Confined Crossflow in a Rectangular Duct

    Get PDF
    This is a printout of the supplemental spreadsheet that is a supplement to the document found in NASA/TM-2010-216100. The calculations for cases of opposed rows of jets with the orifices on one side shifted show that staggering can improve the mixing, particularly for cases where jets would overpenetrate slightly if the orifices were in an aligned configuration

    Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow

    Get PDF
    Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable result

    Numerical Investigation of LO2 and LCH4 Storage Tanks on the Lunar Surface

    Get PDF
    Currently NASA is developing technologies to enable human exploration of the lunar surface for duration of up to 210 days. While trade studies are still underway, a cryogenic ascent stage using liquid oxygen (LO2) and liquid methane (LCH4) is being considered for the Altair lunar lander. For a representative Altair cryogenic ascent stage, we present a detailed storage analysis of the LO2 and LCH4 propellant tanks on the lunar surface for durations of up to 210 days. Both the LO2 and LCH4 propellant tanks are assumed to be pressurized with gaseous helium at launch. A two-phase lumped-vapor computational fluid dynamics model has been developed to account for the presence of a noncondensable gas in the ullage. The CFD model is used to simulate the initial pressure response of the propellant tanks while they are subjected to representative heat leak rates on the lunar surface. Once a near stationary state is achieved within the liquid phase, multizone model is used to extrapolate the solution farther in time. For fixed propellant mass and tank size, the long-term pressure response for different helium mass fractions in both the LO2 and LCH4 tanks is examined

    Spreadsheet Calculations for Jets in Crossflow: Opposed Rows of Inline and Staggered Holes and Single and Opposed Rows with Alternating Hole Sizes

    Get PDF
    The primary purpose of this jet-in-crossflow study was to calculate expected results for two configurations for which limited or no experimental results have been published: (1) cases of opposed rows of closely-spaced jets from inline and staggered round holes and (2) rows of jets from alternating large and small round holes. Simulations of these configurations were performed using an Excel (Microsoft Corporation) spreadsheet implementation of a NASA-developed empirical model which had been shown in previous publications to give excellent representations of mean experimental scalar results suggesting that the NASA empirical model for the scalar field could confidently be used to investigate these configurations. The supplemental Excel spreadsheet is posted with the current report on the NASA Glenn Technical Reports Server (http://gltrs.grc.nasa.gov) and can be accessed from the Supplementary Notes section as TM-2010-216100-SUPPL1.xls. Calculations for cases of opposed rows of jets with the orifices on one side shifted show that staggering can improve the mixing, particularly for cases where jets would overpenetrate slightly if the orifices were in an aligned configuration. The jets from the larger holes dominate the mixture fraction for configurations with a row of large holes opposite a row of smaller ones although the jet penetration was about the same. For single and opposed rows with mixed hole sizes, jets from the larger holes penetrated farther. For all cases investigated, the dimensionless variance of the mixture fraction decreased significantly with increasing downstream distance. However, at a given downstream distance, the variation between cases was small

    Formación de nanoestructuras de silicio por evaporación térmica y pulverización catódica. Intento de crecimiento de nanohilos de silicio

    Get PDF
    El proyecto tiene como objetivo estudiar las posibilidades de síntesis de nanohilos de silicio mediante evaporación térmica y pulverización catódica. Con estas técnicas se pretende lograr un crecimiento aditivo en un escenario VLS (Vapor Liquid Solid). Se han utilizado obleas de silicio recubiertas de oro o aluminio como catalizador, sometidas a un tratamiento térmico para lograr una aleación eutéctica. Se han realizado 19 ensayos variando los parámetros experimentales, y se han obtenido 44 muestras diferentes, caracterizadas mediante SEM. Después de un estudio exhaustivo no se ha podido hacer crecer nanohilos de silicio, confirmando la dificultad de su obtención con las técnicas propuestas.El projecte té com objectiu estudiar les posibilitats de síntesi de nanofils de silici utilitzant tècniques d'evaporació tèrmica i polvorització catòdica. Amb aquestes tècniques es pretén aconseguir un creixement additiu en un escenari VLS (Vapor Liquid Solid). S'han utilitzat oblees de silici recobertes d'or o alumini com a catalitzador, sotmeses a un tractament tèrmic per aconseguir un aliatge eutèctic. S'han realitzat 19 assajos variant els paràmetres experimentals, i s'han obtingut 44 mostres diferents, caracteritzades per SEM. Desprès d'un estudi exhaustiu no s'han pogut fer créixer nanofils de silici, confirmant la dificultat de la seva obtenció amb les tècniques proposades
    corecore