152 research outputs found

    Design of a Low-Cost Microstrip Directional Coupler with High Coupling for a Motion Detection Sensor

    Get PDF
    A coupled-line coupler based on the asymmetric cascade connection of two coupled line sections is used to achieve a high coupling factor using low-cost material and technology in the X frequency band, and its performance is compared with a standard quarter-wave, coupled-line coupler, showing an increase in the coupling factor of about 3 dB. The proposed coupler can be effectively used in a Doppler motion detection sensor, due to its strong coupling and relatively high isolation. The coupler is designed through a simple, yet rigorous, equivalent circuital model. Then,anoptimizationprocedurewasperformedusingthecommercialsoftwareAnsysHFSSinorder to compensate for losses and second order effects. A prototype of the designed coupler was realized, and the measured data show very good agreement with simulations

    A multiband proximity-coupled-fed flexible microstrip antenna for wireless systems

    Get PDF
    A multiband printed microstrip antenna for wireless communications is presented. The antenna is fed by a proximity-coupled microstrip line, and it is printed on a flexible substrate. The antenna has been designed using a general-purpose 3D computeraided design software (CAD), CST Microwave Studio, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications for WLAN systems, covering both the WLAN S-band (2.45GHz) and C-band (5.2GHz), and the Wi-Max 3.5GHz band, with satisfactory input matching and broadside radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents a discrete out-of-band rejection, without requiring the use of stop-band filters. The proposed structure can be used also as a conformal antenna, and its frequency response and radiated field are satisfactory for curvatures up to 65°

    A Wearable Textile RFID Tag Based on an Eighth-Mode Substrate Integrated Waveguide Cavity

    Get PDF
    A novel wearable textile Radio Frequency Identification (RFID) tag based on an eighth-mode substrate integrated waveguide cavity is presented. Antenna size reduction for effective operation in the [865-870]-MHz RFID UHF band is obtained by exploiting the H-field symmetry planes of a cylindrical Substrate Integrated Waveguide (SIW) cavity. High isolation from the human body and excellent robustness with respect to variations in antenna-body distance are achieved using an energy-based design strategy, aiming to reduce ground plane size. The resulting tag exhibits very low manufacturing complexity and may be produced at low-cost. Design and simulations were performed using CST Microwave Studio, and a prototype of the tag has been manufactured and tested in a real environment

    A Truncated Waveguide Fed by a Microstrip as a Radiating Element for High-Performance Automotive Anticollision Radars

    Get PDF
    A small truncated waveguide fed by a microstrip line through a transverse coupling slot is proposed and assessed as a high-performance antenna and array element in the K band and above. This antenna allows to obtain a high radiated power, with a very low cross-polar component in the radiated field. It is therefore particularly suitable for application in automotive anticollision radars. The proposed radiating element has been analyzed by a numerical code based on an in-house method of moments, and the microstrip feeding line has been modeled by its equivalent magnetic-wall waveguide. A linear array of such elements has been designed and matched with a BPF-inspired matching network allowing an in-band behavior suitable for anti-collision radar use, with an out-of-band rejection large enough to avoid the first receiving BPF

    Design of Shaped-Beam Planar Arrays of Waveguide Longitudinal Slots

    Get PDF
    The Elliott's procedure for the design of a pencil beam waveguide longitudinal slot array has been generalized to encompass the design of shaped beam planar slot arrays. An extended set of design equations, taking into account in an operative way the feeding part of the array, has been devised. From this set of equations, a general and effective design procedure has been set up, shedding light on the constraints posed by a complex aperture distribution. The results of the proposed synthesis procedure have been validated through comparison with a commercial FEM software

    Structure-Based Evolutionary Programming Design of Broadband Wire Antennas

    Get PDF
    A design technique for wire antennas, based on the Structure-Based Evolutionary Programming, is used to design a broadband antenna with an end-fire radiation pattern and a very simple geometry, operating in the 3–16 GHz frequency band, namely, from the S band to the Ku band. The antenna has been analyzed with NEC-2 during the evolutionary process, looking for high gain, good input match, and robustness with respect to realization tolerances. The outcome of our design procedure shows a very good performance

    A review on improved design techniques for high performance planar waveguide slot arrays

    Get PDF
    Planar waveguide slot arrays (WSAs) have been used since 1940 and are currently used as performing antennas for high frequencies, especially in applications such as communication and RADAR systems. We present in this work a review of the most typical waveguide slot array configurations proposed in the literature, describing their main limitations and drawbacks along with possible effective countermeasures. Our attention has been focused mainly on the improved available design techniques to obtain high performance WSAs. In particular, the addressed topics have been reported in the following. Partially filled WSAs, or WSAs covered with single or multilayer dielectric slabs, are discussed. The most prominent second-order effects in the planar array feeding network are introduced and accurately modeled. The attention is focused on the T-junction feeding the array, on the effect of interaction between each slot coupler of the feeding network and the radiating slots nearest to this coupler, and on the waveguide bends. All these effects can critically increase the first sidelobes if compared to the ideal case, causing a sensible worsening in the performance of the arra

    Synthesis of Artificial Magnetic Conductors Using Structure-Based Evolutionary Design

    Get PDF
    An evolutionary programming approach, the so-called structure based evolutionary design, is applied to the synthesis of planar periodic electronic band gap in order to obtain an artificial magnetic conductor surface. We show that this strategy, in conjunction with a flexible aperture-oriented approach, allows for obtaining new and effective structures. This almost unique ability is exploited to obtain an artificial magnetic conductor periodic surface with a bandwidth larger than the most popular surfaces known so far

    Design of Multilayer Dielectric Cover to Enhance Gain and Efficiency of Slot Arrays

    Get PDF
    An effective design procedure, based on the Elliot’s synthesis method, is proposed to investigate the properties of waveguide slot arrays with multilayer dielectric cover. Then, the features of the designed arrays are analyzed by means of a FEM commercial software, namely Ansys HFSS 13. We show how a proper choice of the dielectric cover configuration allows to increase the array gain and aperture efficiency, while taking advantage of the properties of the radome structure, both in terms of insulation, protection and pressurization of the radiating waveguides. Therefore, a significant outcome of the optimal choice of the multilayer dielectric cover is the reduction of the number of slots with respect to an array radiating into free space with the same gain and efficiency, with a consequent reduction of the production cost
    corecore