8,327 research outputs found

    Productivity and carbon allocation in monospecific and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil

    Full text link
    Nitrogen fertilizer inputs are required in fast growing eucalypt plantations to meet tree requirements, and to compensate for the large nitrogen outputs associated with wood exportation at the end of the short rotations. Due to the economic and potential environmental cost of fertilizers, mixed-species plantations (MSP) with N-fixing species (NFS) such as Acacia sp. might be an attractive option to improve the long-term soil N (and possibly soil carbon) status. In such MSP, increases in N availability may influence the productivity and C partitioning of the non-N fixing species. To investigate the effects of NFS on nutrient cycling, wood production, C sequestration, and soil fertility, a randomized block design including monocultures of Eucalyptus grandis (100%E) and Acacia mangium (100%A), and mixtures of these species (50%E:50%A) was set up in southern Brazil. Our specific goals in the present study were to compare the production and C allocation patterns of these plantations, during the two last years of the 6-yr rotation. We hypothesized that 1) a large part of the differences in wood production between monospecific stands would be explained by differences in C allocation; and 2) the C allocation patterns of each species would be strongly modified in mixed- species plantations compared to mono-specific plantations due to inter-specific interactions and shifts in soil N status. Biomass increase (growth, G) in the different plant compartments was assessed by means of inventories and allometric relationships. Total aboveground net primary productivity (ANPP), and the productivity of each aboveground plant compartment were estimated from measurements of G and litterfall (L) (ANPP=G L). Total belowground C allocations (TBCA) were estimated using a mass-balance approach as soil CO2 efflux C minus the C input from aboveground litter plus changes in the C stored in roots, in the forest floor litter layer, and in soil. Over this first rotation, mixing NFS with eucalypt did not increase wood production: at the end of the 6 yr-old rotation, total aboveground biomass was the highest in the 100%E stands (68.2 tC/ha), lowest in the MSP 50%E:50%A (62.0 tC/ha), and intermediary in the 100%A (66.0 tC/ha). Although 100%E stands had a stronger growth than 100%A during the first 4 yrs of the rotation, the reverse was observed at the end of the rotation: during the two last yrs, total growth was 15.9 tC/ha/yr for 100%A, and 12.7 and 10.4 tC/ha/yr for 100%E and 50�0%A, respectively. These differences in growth were explained by differences in ANPP (19.2, 17.8 and 15.2 tC/ha/yr, for 100%A, 100%E, and 50�0%A, respectively), and differences in the ratio litter production/ANPP (0.17, 0.29, and 0.31 for 100%A, 100%E, and 50�0%E, respectively). Furthermore, the ratio TBCA/ANPP was the lowest in 100%A, and the highest in the MSPs (0.44, 0.62, and 0.78, for 100%A, 100%E, and 50,�0%E, respectively). These results suggest that inter-specific interactions have a strong effect on the C allocation pattern observed at the stand level in MSPs

    Light use efficiency in pure and mixed Eucalyptus and Acacia mangium plantations with different stocking densities

    Get PDF
    Competition for light in mixed-species plantations is a main limiting factor for tree growth. Understanding the light absorption and light use efficiency for each species at different planting densities and spatial arrangement of trees is essential for improving these plantations management. The study was conducted in Itatinga-SP, Brazil. A complete randomized block design was set up with 4 blocks and I O treatments per block with pure and mixed plantations of Eucalyptus grandis (E) and Acacia mangium (A), a N2-fixing species (NFS). The treatments were composed with different planting densities (6 m x 3 m, 3 m x 3 m and 3 m x 2 m) and arrangements (I 00% A, I 00% E, 50% A and 50% E, 33% A and 67% E) between species. Tree growth and biomass were monitored at 38, 45 and 52 months after planting. The absorbed photosynthetically activeradiation (APAR) for each tree was simulated with the MAESTRA model. The leaf area of each tree, leaf angle distributions and leaf area density was estimated in situ to parameterize the model. Hemispherical photos were taken over the same period of time (every 2 months) and used to test MAESTRA simulations and validate the light interception simulations. Computed Light Use Efficiency (LUE) for trunk wood production was estimated as the ratio of the wood growth and the MAESTRA simulated APAR, showing contrasted patterns of LUE for each treatment. The results will give insights to choose the best design, decreasing light competition and improving the association between eucalyptus and NFS, for a more sustainable management of pure and mixed forest plantations

    Green fluorescent protein-based expression screening of membrane proteins in Escherichia coli.

    No full text
    The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation

    Verified and potential pathogens of predatory mites (Acari: Phytoseiidae)

    Get PDF
    Several species of phytoseiid mites (Acari: Phytoseiidae), including species of the genera Amblyseius, Galendromus, Metaseiulus, Neoseiulus, Phytoseiulus and Typhlodromus, are currently reared for biological control of various crop pests and/or as model organisms for the study of predator¿prey interactions. Pathogen-free phytoseiid mites are important to obtain high efficacy in biological pest control and to get reliable data in mite research, as pathogens may affect the performance of their host or alter their reproduction and behaviour. Potential and verified pathogens have been reported for phytoseiid mites during the past 25 years. The present review provides an overview, including potential pathogens with unknown host effects (17 reports), endosymbiotic Wolbachia (seven reports), other bacteria (including Cardinium and Spiroplasma) (four reports), cases of unidentified diseases (three reports) and cases of verified pathogens (six reports). From the latter group four reports refer to Microsporidia, one to a fungus and one to a bacterium. Only five entities have been studied in detail, including Wolbachia infecting seven predatory mite species, other endosymbiotic bacteria infecting Metaseiulus (Galendromus, Typhlodromus) occidentalis (Nesbitt), the bacterium Acaricomes phytoseiuli infecting Phytoseiulus persimilis Athias-Henriot, the microsporidium Microsporidium phytoseiuli infecting P. persimilis and the microsporidium Oligosproridium occidentalis infecting M. occidentalis. In four cases (Wolbachia, A. phytoseiuli, M. phytoseiuli and O. occidentalis) an infection may be connected with fitness costs of the host. Moreover, infection is not always readily visible as no obvious gross symptoms are present. Monitoring of these entities on a routine and continuous basis should therefore get more attention, especially in commercial mass-production. Special attention should be paid to field-collected mites before introduction into the laboratory or mass rearing, and to mites that are exchanged among rearing facilities. However, at present general pathogen monitoring is not yet practical as effects of many entities are unknown. More research effort is needed concerning verified and potential pathogens of commercially reared arthropods and those used as model organisms in research

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore