4,543 research outputs found
Ultracold fermions in a one-dimensional bipartite optical lattice: metal-insulator transitions driven by shaking
We describe the behavior of a system of fermionic atoms loaded in a bipartite
one-dimensional optical lattice that is under the action of an external
time-periodic driving force. By using Floquet theory, an effective model with
renormalized hopping coefficients is derived. The insulating behavior
characterizing the system at half-filling in the absence of driving is
dynamically suppressed and for particular values of the driving parameter the
system becomes either a standard metal or an unconventional metal with four
Fermi points. We use the bosonization technique to investigate the effect of
on-site Hubbard interactions on the four Fermi-point metal-insulator phase
transition. Attractive interactions are expected to enlarge the regime of
parameters where the unconventional metallic phase arises, whereas repulsive
interactions reduce it. This metallic phase is known to be a Luther-Emery
liquid (spin gapped metal) for both, repulsive and attractive interactions,
contrarily to the usual Hubbard model which exhibits a Mott insulator phase for
repulsive interactions. Ultracold fermions in driven one-dimensional bipartite
optical lattices provide an interesting platform for the realization of this
long studied four Fermi-point unconventional metal.Comment: 11 pages, 6 figure
Spin- and band-ferromagnetism in trilayer graphene
We study the ground state properties of an ABA-stacked trilayer graphene. The
low energy band structure can be described by a combination of both a linear
and a quadratic particle-hole symmetric dispersions, reminiscent of monolayer-
and bilayer-graphene, respectively. The multi-band structure offers more
channels for instability towards ferromagnetism when the Coulomb interaction is
taken into account. Indeed, if one associates a pseudo-spin 1/2 degree of
freedom to the bands (parabolic/linear), it is possible to realize also a
band-ferromagnetic state, where there is a shift in the energy bands, since
they fill up differently. By using a variational procedure, we compute the
exchange energies for all possible variational ground states and identify the
parameter space for the occurrence of spin- and band-ferromagnetic
instabilities as a function of doping and interaction strength.Comment: 9 pages/ 8 figure
Quantum simulation of correlated-hopping models with fermions in optical lattices
By using a modulated magnetic field in a Feshbach resonance for ultracold
fermionic atoms in optical lattices, we show that it is possible to engineer a
class of models usually referred to as correlated-hopping models. These models
differ from the Hubbard model in exhibiting additional density-dependent
interaction terms that affect the hopping processes. In addition to the
spin-SU(2) symmetry, they also possess a charge-SU(2) symmetry, which opens the
possibility of investigating the -pairing mechanism for superconductivity
introduced by Yang for the Hubbard model. We discuss the known solution of the
model in 1D (where states have been found in the degenerate manifold of
the ground state) and show that, away from the integrable point, quantum Monte
Carlo simulations at half filling predict the emergence of a phase with
coexisting incommensurate spin and charge order.Comment: 10 pages, 9 figure
Thermodynamics of Black Holes in Rastall Gravity
A promising theory in modifying general relativity by violating the ordinary
energy-momentum conservation law in curved spacetime is the Rastall theory of
gravity. In this theory, geometry and matter fields are coupled to each other
in a non-minimal way. Here, we study thermodynamic properties of some black
hole solutions in this framework, and compare our results with those of general
relativity. We demonstrate how the presence of these matter sources may amplify
effects caused by the Rastall parameter in thermodynamic quantities. Our
investigation also shows that black holes with radius smaller than a certain
amount () have negative heat capacity in the Rastall framework. In
fact, it is a lower bound for the possible values of horizon radius satisfied
by stable black holes.Comment: 17 pages, 10 figures. Matches the published versio
Kounis Syndrome Associated With Selective Anaphylaxis to Cefazolin.
info:eu-repo/semantics/publishedVersio
Quasinormal modes of a black hole with a cloud of strings in Einstein-Gauss-Bonnet gravity
The quasinormal modes for a scalar field in the background spacetime
corresponding to a black hole, with a cloud of strings, in
Einstein-Gauss-Bonnet gravity, and the tensor quasinormal modes corresponding
to perturbations in such spacetime, were both calculated using the WKB
approximation. In the obtained results we emphasize the role played by the
parameter associated with the string cloud, comparing them with the results
already obtained for the Boulware-Deser metric. We also study how the
Gauss-Bonnet correction to general relativity affects the results for the
quasinormal modes, comparing them with the same background in general
relativity.Comment: 15 pages, 7 figures; To appear in IJMP
Chern-Simons theory of multi-component quantum Hall systems
The Chern-Simons approach has been widely used to explain fractional quantum
Hall states in the framework of trial wave functions. In the present paper, we
generalise the concept of Chern-Simons transformations to systems with any
number of components (spin or pseudospin degrees of freedom), extending earlier
results for systems with one or two components. We treat the density
fluctuations by adding auxiliary gauge fields and appropriate constraints. The
Hamiltonian is quadratic in these fields and hence can be treated as a harmonic
oscillator Hamiltonian, with a ground state that is connected to the Halperin
wave functions through the plasma analogy. We investigate several conditions on
the coefficients of the Chern-Simons transformation and on the filling factors
under which our model is valid. Furthermore, we discuss several singular cases,
associated with symmetric states.Comment: 11 pages, shortened version, accepted for publication in Phys. Rev.
- …
