225 research outputs found
Conceptual Frameworks and Methods for Advancing Invasion Ecology
Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology
The epidemiology of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in community-living seniors: protocol of the MemoVie cohort study, Luxembourg
BACKGROUND: Cognitive impairment and Alzheimer’s disease (AD) are increasingly considered a major public health problem. The MemoVie cohort study aims to investigate the living conditions or risk factors under which the normal cognitive capacities of the senior population in Luxembourg (≥ 65 year-old) evolve (1) to mild cognitive impairment (MCI) – transitory non-clinical stage – and (2) to AD. Identifying MCI and AD predictors undeniably constitutes a challenge in public health in that it would allow interventions which could protect or delay the occurrence of cognitive disorders in elderly people. In addition, the MemoVie study sets out to generate hitherto unavailable data, and a comprehensive view of the elderly population in the country. METHODS/DESIGN: The study has been designed with a view to highlighting the prevalence in Luxembourg of MCI and AD in the first step of the survey, conducted among participants selected from a random sample of the general population. A prospective cohort is consequently set up in the second step, and appropriate follow-up of the non-demented participants allows improving the knowledge of the preclinical stage of MCI. Case-control designs are used for cross-sectional or retrospective comparisons between outcomes and biological or clinical factors. To ensure maximal reliability of the information collected, we decided to opt for structured face to face interviews. Besides health status, medical and family history, demographic and socio-cultural information are explored, as well as education, habitat network, social behavior, leisure and physical activities. As multilingualism is expected to challenge the cognitive alterations associated with pathological ageing, it is additionally investigated. Data relative to motor function, including balance, walk, limits of stability, history of falls and accidents are further detailed. Finally, biological examinations, including ApoE genetic polymorphism are carried out. In addition to standard blood parameters, the lipid status of the participants is subsequently determined from the fatty acid profiles in their red blood cells. The study obtained the legal and ethical authorizations. DISCUSSION: By means of the multidisciplinary MemoVie study, new insights into the onset of cognitive impairment during aging should be put forward, much to the benefit of intervention strategies as a whole
Recommended from our members
Five Questions about Viral Trafficking in Neurons
One of the most exciting areas in biology is the nervous system and how it works. Viral infections of the nervous system have provided exceptional insight at many levels, from pathogenesis to basic biology. The nervous system has evolved rather complicated barriers that facilitate access to nutrients and contact with the outside world, but block entry of pathogens and toxins [1]. However, when these barriers are reduced for any number of reasons, nervous system infections are possible. When they occur, they can be devastating and, even with good antiviral drugs, difficult to manage. Viral infections can enter the brain via the blood (e.g., HIV, various encephalitis viruses) or by spread inside neurons from the body surface (e.g., rabies and alpha herpes viruses) [2,3]. In vertebrates, the nervous system comprises a peripheral collection of neurons (the peripheral nervous system, PNS) and a central set found in the brain and spinal cord (the central nervous system, CNS). While neurons are central players in neurobiology, it is important to realize that the majority of cells that comprise the nervous system are highly specialized, nonneuronal cells (e.g., different types of glial cells) [4]. Cells of the immune system also engage with and signal to the PNS to affect changes in the CNS [5]. We will focus on neurons, despite the other cellular complexity, because neurons provide direct avenues for viral infection. Recognition that viral infection follows nerve pathways enabled the development of viruses for neuronal circuit tracing [6–8]
High-quality habitat and facilitation ameliorate competitive effects of prior residents on new settlers
Many species disperse during their lifetime. Two factors that can affect the performance of individuals following dispersal are the presence of conspecifics and intrinsic habitat quality at the settlement site. Detecting the influence of these factors can be difficult for at least two reasons: (1) the outcomes of interactions with conspecifics are often variable including both competition and facilitation, and (2) selection of high quality habitats often leads to positive covariance between habitat quality and density. In this study, I investigate positive and negative effects of resident blue streak cleaner wrasse (Labroides dimidiatus) on the growth and survival of recently settled conspecifics while accounting for habitat quality. Juvenile L. dimidiatus settle near adult conspecifics, but likely have to compete with resident adults for access to food. However, field experiments indicate that settlers have access to more resources at occupied sites, and as a result, grow faster despite evidence for competition with residents. This result is a direct consequence of two factors: (1) resident conspecifics facilitate settlers by attracting client fish, and (2) resident conspecifics are strongly associated with high quality habitat. These results highlight the need to simultaneously consider habitat quality and competitive and facilitative interactions between conspecifics when making inferences about ecological processes from spatial patterns of individual performance
Orally available Mn porphyrins with superoxide dismutase and catalase activities
Superoxide dismutase/catalase mimetics, such as salen Mn complexes and certain metalloporphyrins, catalytically neutralize reactive oxygen and nitrogen species, which have been implicated in the pathogenesis of many serious diseases. Both classes of mimetic are protective in animal models of oxidative stress. However, only AEOL11207 and EUK-418, two uncharged Mn porphyrins, have been shown to be orally bioavailable. In this study, EUK-418 and several new analogs (the EUK-400 series) were synthesized and shown to exhibit superoxide dismutase, catalase, and peroxidase activities in vitro. Some also protected PC12 cells against staurosporine-induced cell death. All EUK-400 compounds were stable in simulated gastric fluid, and most were substantially more lipophilic than the salen Mn complexes EUK-189 and EUK-207, which lack oral activity. Pharmacokinetics studies demonstrate the presence of all EUK-400 series compounds in the plasma of rats after oral administration. These EUK-400 series compounds are potential oral therapeutic agents for cellular damage caused by oxidative stress
DNA Methods to Identify Missing Persons
Human identification by DNA analysis in missing person cases typically involves comparison of two categories of sample: a reference sample, which could be obtained from intimate items of the person in question or from family members, and the questioned sample from the unknown person-usually derived from the bones, teeth, or soft tissues of human remains. Exceptions include the analysis of archived tissues, such as those held by hospital pathology departments, and the analysis of samples relating to missing, but living persons. DNA is extracted from the questioned and reference samples and well-characterized regions of the genetic code are amplified from each source using the Polymerase Chain Reaction (PCR), which generates sufficient copies of the target region for visualization and comparison of the genetic sequences obtained from each sample. If the DNA sequences of the questioned and reference samples differ, this is normally sufficient for the questioned DNA to be excluded as having come from the same source. If the sequences are identical, statistical analysis is necessary to determine the probability that the match is a consequence of the questioned sequence coming from the same individual who provided the reference sample or from a randomly occurring individual in the general population. Match probabilities that are currently achievable are frequently greater than 1 in 1 billion, allowing identity to be assigned with considerable confidence in many cases
Health co-benefits and risks of public health adaptation strategies to climate change: a review of current literature
Correlação do teste de 1RM com aspectos maturacionais, neuromotores, antropométricos e a composição corporal em crianças e adolescentes
Trait plasticity in species interactions: a driving force of community dynamics.
Evolutionary community ecology is an emerging field of study that includes evolutionary principles such as individual trait variation and plasticity of traits to provide a more mechanistic insight as to how species diversity is maintained and community processes are shaped across time and space. In this review we explore phenotypic plasticity in functional traits and its consequences at the community level. We argue that resource requirement and resource uptake are plastic traits that can alter fundamental and realised niches of species in the community if environmental conditions change. We conceptually add to niche models by including phenotypic plasticity in traits involved in resource allocation under stress. Two qualitative predictions that we derive are: (1) plasticity in resource requirement induced by availability of resources enlarges the fundamental niche of species and causes a reduction of vacant niches for other species and (2) plasticity in the proportional resource uptake results in expansion of the realized niche, causing a reduction in the possibility for coexistence with other species. We illustrate these predictions with data on the competitive impact of invasive species. Furthermore, we review the quickly increasing number of empirical studies on evolutionary community ecology and demonstrate the impact of phenotypic plasticity on community composition. Among others, we give examples that show that differences in the level of phenotypic plasticity can disrupt species interactions when environmental conditions change, due to effects on realized niches. Finally, we indicate several promising directions for future phenotypic plasticity research in a community context. We need an integrative, trait-based approach that has its roots in community and evolutionary ecology in order to face fast changing environmental conditions such as global warming and urbanization that pose ecological as well as evolutionary challenges. © Springer Science+Business Media B.V. 2010
- …
