45 research outputs found
High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland
Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role
A resource capture efficiency index to compare differences in early growth of four tree species in northern England
A strategic approach for the visualisation of the low abundance protein fatty acid binding protein 7
Fatty acid binding protein 7 (FABP7) is a 15kDa protein that plays a role in fatty acid transport, solubilisation and metabolism. It has been found to be overexpressed in triple negative/basal like breast cancer patients. The role of FABP7 in these breast cancers is not fully understood; in order to better understand how it may be involved with breast cancer prognosis cell line models are needed for mechanistic studies. However using a standard western blotting protocol FABP7 was not detectable in a selection of breast cancer cell lines and mRNA was in low abundance. This paper outlines the approach of modifying a western blot protocol and presents an optimised western blot protocol for the detection of FABP7 in breast cancer cell lines. The main areas considered during optimisation were, titration of primary and secondary antibodies, choice of protein lysis buffer, lysate preparation and a comparison between in-house 12% polyacrylamide gels and commercially available gradient polyacrylamide gels. This strategy could be used for other low abundant and small proteins
Blood lipids and prostate cancer: a Mendelian randomization analysis.
Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL consortium were analyzed. Allele scores based on single nucleotide polymorphisms (SNPs) previously reported to be uniquely associated with each of low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels, were first validated in an independent dataset, and then entered into logistic regression models to estimate the presence (and direction) of any causal effect of each lipid trait on prostate cancer risk. There was weak evidence for an association between the LDL genetic score and cancer grade: the odds ratio (OR) per genetically instrumented standard deviation (SD) in LDL, comparing high- (≥7 Gleason score) versus low-grade (<7 Gleason score) cancers was 1.50 (95% CI: 0.92, 2.46; P = 0.11). A genetically instrumented SD increase in TGs was weakly associated with stage: the OR for advanced versus localized cancer per unit increase in genetic risk score was 1.68 (95% CI: 0.95, 3.00; P = 0.08). The rs12916-T variant in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was inversely associated with prostate cancer (OR: 0.97; 95% CI: 0.94, 1.00; P = 0.03). In conclusion, circulating lipids, instrumented by our genetic risk scores, did not appear to alter prostate cancer risk. We found weak evidence that higher LDL and TG levels increase aggressive prostate cancer risk, and that a variant in HMGCR (that mimics the LDL lowering effect of statin drugs) reduces risk. However, inferences are limited by sample size and evidence of pleiotropy.C. J. B. is funded by the Wellcome Trust 4-year studentship WT083431MA. The Integrative Cancer Epidemiology Programme is supported by Cancer Research UK programme grant C18281/A19169. The MRC IEU is supported by the Medical Research Council and the University of Bristol (MC_UU_12013/1-9). The NIHR Bristol Nutrition Biomedical Research Unit is funded by the National Institute for Health Research (NIHR) and is a partnership between University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The CRUK study and PRACTICAL consortium is supported by the Canadian Institutes of Health Research, European Commission’s Seventh Framework Programme grant agreement no. 223175 (HEALTH-F2-2009-223175), Cancer Research UK Grants C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, and C16913/ A6135. The National Institutes of Health (NIH) Cancer Post-Cancer GWAS initiative grant no. 1 U19 CA 148537-01 (the GAME-ON initiative) and NIHR support to the Biomedical Research Centre and The Institute of Cancer Research and Royal Marsden NHS Foundation Trust.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/cam4.69
Immunohistochemical expression of insulin-like growth factor binding protein-3 in invasive breast cancers and ductal carcinoma in situ: implications for clinicopathology and patient outcome
INTRODUCTION: Insulin-like growth factor binding protein-3 (IGFBP-3) differentially modulates breast epithelial cell growth through insulin-like growth factor (IGF)-dependent and IGF-independent pathways and is a direct (IGF-independent) growth inhibitor as well as a mitogen that potentiates EGF (epidermal growth factor) and interacts with HER-2. Previously, high IGFBP-3 levels in breast cancers have been determined by enzyme-linked immunosorbent assay and immunoradiometric assay methods. In vitro, IGFBP-3's mechanisms of action may involve cell membrane binding and nuclear translocation. To evaluate tumour-specific IGFBP-3 expression and its subcellular localisation, this study examined immunohistochemical IGFBP-3 expression in a series of invasive ductal breast cancers (IDCs) with synchronous ductal carcinomas in situ (DCIS) in relation to clinicopathological variables and patient outcome. METHODS: Immunohistochemical expression of IGFBP-3 was evaluated with the sheep polyclonal antiserum (developed in house) with staining performed as described previously. RESULTS: IGFBP-3 was evaluable in 101 patients with a variable pattern of cytoplasmic expression (positivity of 1+/2+ score) in 85% of invasive and 90% of DCIS components. Strong (2+) IGFBP-3 expression was evident in 32 IDCs and 40 cases of DCIS. A minority of invasive tumours (15%) and DCIS (10%) lacked IGFBP-3 expression. Nuclear IGFBP-3 expression was not detectable in either invasive cancers or DCIS, with a consistent similarity in IGFBP-3 immunoreactivity in IDCs and DCIS. Positive IGFBP-3 expression showed a possible trend in association with increased proliferation (P = 0.096), oestrogen receptor (ER) negativity (P = 0.06) and HER-2 overexpression (P = 0.065) in invasive tumours and a strong association with ER negativity (P = 0.037) in DCIS. Although IGFBP-3 expression was not an independent prognosticator, IGFBP-3-positive breast cancers may have shorter disease-free and overall survivals, although these did not reach statistical significance. CONCLUSIONS: Increased breast epithelial IGFBP-3 expression is a feature of tumorigenesis with cytoplasmic immunoreactivity in the absence of significant nuclear localisation in IDCs and DCIS. There are trends between high levels of IGFBP-3 and poor prognostic features, suggesting that IGFBP-3 is a potential mitogen. IGFBP-3 is not an independent prognosticator for overall survival or disease-free survival, to reflect its dual effects on breast cancer growth regulated by complex pathways in vivo that may relate to its interactions with other growth factors
