18,583 research outputs found

    A summary of the BARREL campaigns: Technique for studying electron precipitation.

    Get PDF
    BARREL observed electron precipitation over wide range of energy and timescalesPrecipitating electron distribution is determined using spectroscopy for 19 January 2013 eventBARREL timing data has accuracy within sampling interval of 0.05 s

    Expressions for forces and torques in molecular simulations using rigid bodies

    Get PDF
    Expressions for intermolecular forces and torques, derived from pair potentials between rigid non-spherical units, are presented. The aim is to give compact and clear expressions, which are easily generalised, and which minimise the risk of error in writing molecular dynamics simulation programs. It is anticipated that these expressions will be useful in the simulation of liquid crystalline systems, and in coarse-grained modelling of macromolecules

    Proteomic identification of prognostic tumour biomarkers, using chemotherapy-induced cancer-associated fibroblasts

    Get PDF
    Cancer cells grow in highly complex stromal microenvironments, which through metabolic remodelling, catabolism, autophagy and inflammation nurture them and are able to facilitate metastasis and resistance to therapy. However, these changes in the metabolic profile of stromal cancer-associated fibroblasts and their impact on cancer initiation, progression and metastasis are not well-known. This is the first study to provide a comprehensive proteomic portrait of the azathioprine and taxol-induced catabolic state on human stromal fibroblasts, which comprises changes in the expression of metabolic enzymes, myofibroblastic differentiation markers, antioxidants, proteins involved in autophagy, senescence, vesicle trafficking and protein degradation, and inducers of inflammation. Interestingly, many of these features are major contributors to the aging process. A catabolic stroma signature, generated with proteins found differentially up-regulated in taxol-treated fibroblasts, strikingly correlates with recurrence, metastasis and poor patient survival in several solid malignancies. We therefore suggest the inhibition of the catabolic state in healthy cells as a novel approach to improve current chemotherapy efficacies and possibly avoid future carcinogenic processes

    Using Regular Languages to Explore the Representational Capacity of Recurrent Neural Architectures

    Get PDF
    The presence of Long Distance Dependencies (LDDs) in sequential data poses significant challenges for computational models. Various recurrent neural architectures have been designed to mitigate this issue. In order to test these state-of-the-art architectures, there is growing need for rich benchmarking datasets. However, one of the drawbacks of existing datasets is the lack of experimental control with regards to the presence and/or degree of LDDs. This lack of control limits the analysis of model performance in relation to the specific challenge posed by LDDs. One way to address this is to use synthetic data having the properties of subregular languages. The degree of LDDs within the generated data can be controlled through the k parameter, length of the generated strings, and by choosing appropriate forbidden strings. In this paper, we explore the capacity of different RNN extensions to model LDDs, by evaluating these models on a sequence of SPk synthesized datasets, where each subsequent dataset exhibits a longer degree of LDD. Even though SPk are simple languages, the presence of LDDs does have significant impact on the performance of recurrent neural architectures, thus making them prime candidate in benchmarking tasks.Comment: International Conference of Artificial Neural Networks (ICANN) 201

    A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface.

    No full text
    To investigate Yersinia pathogenicity and the evolutionary divergence of the genus, the effect of pathogenic yersiniae on the model organism Caenorhabditis elegans was studied. Three strains of Yersinia pestis, including a strain lacking pMT1, caused blockage and death of C. elegans; one strain, lacking the haemin storage (hms) locus, caused no effect. Similarly, 15 strains of Yersinia enterocolitica caused no effect. Strains of Yersinia pseudotuberculosis showed different levels of pathogenicity. The majority of strains (76 %) caused no discernible effect; 5 % caused a weak infection, 9.5 % an intermediate infection, and 9.5 % a severe infection. There was no consistent relationship between serotype and severity of infection; nor was there any relationship between strains causing infection of C. elegans and those able to form a biofilm on an abiotic surface. Electron microscope and cytochemical examination of infected worms indicated that the infection phenotype is a result of biofilm formation on the head of the worm. Seven transposon mutants of Y. pseudotuberculosis strain YPIII pIB1 were completely or partially attenuated; mutated genes included genes encoding proteins involved in haemin storage and lipopolysaccharide biosynthesis. A screen of 15 defined C. elegans mutants identified four where mutation caused (complete) resistance to infection by Y. pseudotuberculosis YPIII pIB1. These mutants, srf-2, srf-3, srf-5 and the dauer pathway gene daf-1, also exhibit altered binding of lectins to the nematode surface. This suggests that biofilm formation on a biotic surface is an interactive process involving both bacterial and invertebrate control mechanisms

    Plasma arginine vasopressin concentrations in epileptics under monotherapy

    Get PDF
    Plasma arginine vasopressin concentrations were determined by radio-immunoassay in 112 adult epileptics who were taking carbamazepine, phenytoin, primidone, or sodium valproate in long-term monotherapy, and in 19 controls. No significant difference was found between the groups, but some epileptics taking carbamazepine and primidone showed low values. Serum concentrations of carbamazepine did not correlate with the concentrations of plasma arginine vasopressin. In conclusion, there was no evidence of a stimulating effect of chronic carbamazepine medication or a special inhibiting effect of phenytoin on the release of vasopressin arginine from the posterior pituitary

    A missing dimension in measures of vaccination impacts

    Get PDF
    Immunological protection, acquired from either natural infection or vaccination, varies among hosts, reflecting underlying biological variation and affecting population-level protection. Owing to the nature of resistance mechanisms, distributions of susceptibility and protection entangle with pathogen dose in a way that can be decoupled by adequately representing the dose dimension. Any infectious processes must depend in some fashion on dose, and empirical evidence exists for an effect of exposure dose on the probability of transmission to mumps-vaccinated hosts [1], the case-fatality ratio of measles [2], and the probability of infection and, given infection, of symptoms in cholera [3]. Extreme distributions of vaccine protection have been termed leaky (partially protects all hosts) and all-or-nothing (totally protects a proportion of hosts) [4]. These distributions can be distinguished in vaccine field trials from the time dependence of infections [5]. Frailty mixing models have also been proposed to estimate the distribution of protection from time to event data [6], [7], although the results are not comparable across regions unless there is explicit control for baseline transmission [8]. Distributions of host susceptibility and acquired protection can be estimated from dose-response data generated under controlled experimental conditions [9]–[11] and natural settings [12], [13]. These distributions can guide research on mechanisms of protection, as well as enable model validity across the entire range of transmission intensities. We argue for a shift to a dose-dimension paradigm in infectious disease science and community health

    Comparison of 20nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages

    Get PDF
    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies

    Novel translational model of resolving inflammation triggered by UV-killed E. coli

    Get PDF
    Whilst numerous studies investigating the aetiology of inflammatory diseases have been performed in rodents, the applicability of these data to human pathophysiology is frequently debated. Regardless of the strengths and weaknesses of rodent models in biomedical research, there is a need to develop models of experimental inflammation in humans. Here, we describe a self-resolving acute inflammatory response triggered by the intradermal injection of UV-killed Escherichia coli into the forearm of healthy volunteers. Cells and exudates were harvested from onset to resolution by applying negative pressure over the inflamed site. Onset was characterized by high blood flow, neutrophilia and peak levels of pro-inflammatory cytokines, whilst resolution showed a decline in blood blow, reduction in neutrophils, increase in monocytes/macrophages and waning of classic pro-inflammatory cytokine levels. An anti-inflammatory effect, defined as suppression of onset phase events, was demonstrated by administering naproxen, a conventional non-steroidal anti-inflammatory drug. In summary, this model of resolving acute inflammation is minimally invasive, highly tractable and allows simultaneous investigation of the vascular response, cellular trafficking and chemical mediator profile of onset and resolution phases of acute inflammation in humans. It can serve as a translational platform to provide mechanistic insights and to test the clinical efficacy of novel anti-inflammatory and pro-resolving drugs, and also as a tool in patients to explore inherent defects in resolution pathways

    Developing the content of two behavioural interventions : using theory-based interventions to promote GP management of upper respiratory tract infection without prescribing antibiotics #1

    Get PDF
    Background: Evidence shows that antibiotics have limited effectiveness in the management of upper respiratory tract infection (URTI) yet GPs continue to prescribe antibiotics. Implementation research does not currently provide a strong evidence base to guide the choice of interventions to promote the uptake of such evidence-based practice by health professionals. While systematic reviews demonstrate that interventions to change clinical practice can be effective, heterogeneity between studies hinders generalisation to routine practice. Psychological models of behaviour change that have been used successfully to predict variation in behaviour in the general population can also predict the clinical behaviour of healthcare professionals. The purpose of this study was to design two theoretically-based interventions to promote the management of upper respiratory tract infection (URTI) without prescribing antibiotics. Method: Interventions were developed using a systematic, empirically informed approach in which we: selected theoretical frameworks; identified modifiable behavioural antecedents that predicted GPs intended and actual management of URTI; mapped these target antecedents on to evidence-based behaviour change techniques; and operationalised intervention components in a format suitable for delivery by postal questionnaire. Results: We identified two psychological constructs that predicted GP management of URTI: "Self-efficacy," representing belief in one's capabilities, and "Anticipated consequences," representing beliefs about the consequences of one's actions. Behavioural techniques known to be effective in changing these beliefs were used in the design of two paper-based, interactive interventions. Intervention 1 targeted self-efficacy and required GPs to consider progressively more difficult situations in a "graded task" and to develop an "action plan" of what to do when next presented with one of these situations. Intervention 2 targeted anticipated consequences and required GPs to respond to a "persuasive communication" containing a series of pictures representing the consequences of managing URTI with and without antibiotics. Conclusion: It is feasible to systematically develop theoretically-based interventions to change professional practice. Two interventions were designed that differentially target generalisable constructs predictive of GP management of URTI. Our detailed and scientific rationale for the choice and design of our interventions will provide a basis for understanding any effects identified in their evaluation. Trial registration: Clinicaltrials.gov NCT00376142This study is funded by the European Commission Research Directorate as part of a multi-partner program: Research Based Education and Quality Improvement (ReBEQI): A Framework and tools to develop effective quality improvement programs in European healthcare. (Proposal No: QLRT-2001-00657)
    corecore