980 research outputs found
Soy protein–gum karaya conjugate: emulsifying activity and rheological behavior in aqueous system and oil in water emulsion
The main objective of this study is to investigate the effects of mixing and conjugation of soy protein isolate (SPI) with gum karaya on the characteristics of the hybrid polymer (protein–gum) in both aqueous systems and oil-in-water (O/W) emulsions. It was hypothesized that the covalent linkage of gum karaya with SPI would improve the emulsifying activity and rheological properties of both polymers. Conjugation occurred under controlled conditions (i.e., 60 °C and 75 % relative humidity, 3 days). The conjugated hybrid polymer produced smaller droplet with better uniformity, higher viscosity and stronger emulsifying activity than native gum karaya, suggesting the conjugated polymer provided a bulkier secondary layer with more efficient coverage around oil droplets, thereby inducing stronger resistance against droplet aggregation and flocculation. Emulsions containing the native gum karaya produced the largest droplet size among all prepared emulsions (D 3,2 = 8.6 μm; D 4,3 = 22.4 μm); while the emulsion containing protein–gum conjugate (1:1 g/g) had the smallest droplet size (D 3,2 = 0.2 μm; D 4,3 = 0.7 μm) with lower polydispersity. The protein–gum conjugate (1:1 g/g) also showed the highest elastic and viscous modulus, the lowest polydispersity (span) and the highest emulsifying activity among all native, mixed and conjugated polymers. Therefore, the percentage of gum karaya used for production of O/W emulsion can be decreased by partially replacing it with the conjugated gum
Filament Nucleation Tunes Mechanical Memory in Active Polymer Networks
Incorporating growth into contemporary material functionality presents a grand challenge in materials design. The F‐actin cytoskeleton is an active polymer network that serves as the mechanical scaffolding for eukaryotic cells, growing and remodeling in order to determine changes in cell shape. Nucleated from the membrane, filaments polymerize and grow into a dense network whose dynamics of assembly and disassembly, or “turnover,” coordinates both fluidity and rigidity. Here, the extent of F‐actin nucleation is varied from a membrane surface in a biomimetic model of the cytoskeleton constructed from purified protein. It is found that nucleation of F‐actin mediates the accumulation and dissipation of polymerization‐induced F‐actin bending energy. At high and low nucleation, bending energies are low and easily relaxed yielding an isotropic material. However, at an intermediate critical nucleation, stresses are not relaxed by turnover and the internal energy accumulates 100‐fold. In this case, high filament curvatures template further assembly of F‐actin, driving the formation and stabilization of vortex‐like topological defects. Thus, nucleation coordinates mechanical and chemical timescales to encode shape memory into active materials
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
Exploring time and frequency linkages of green bond with renewable energy and crypto market
This paper examines the dynamic linkages of green bond with the energy and crypto market. The S&P green bond index (RSPGB) is used as a proxy for the green bond market; S&P global clean energy index and ISE global wind energy (RIGW) are used as proxies for the renewable energy market, and; Bitcoin and Ethereum (RETHER) are used as the proxies of the crypto market. The daily prices of these constituent series are collected using Bloomberg from October 3, 2016 to February 23, 2021. We undertake an empirical analysis through the application of three key tests, namely: dynamic conditional correlation (DCC), Diebold and Yilmaz (Int J Forecast 28(1):57–66, 2012. 10.1016/j.ijforecast.2011.02.006), Baruník and Křehlík (J Financ Econom 16(2):271–296, 2018. 10.1093/jjfinec/nby001) model. The DCC reveals no dynamic linkages of volatility from the green bond to the energy and crypto market in the short run. Referring to Diebold and Yilmaz (2012), it dictates that the green bond (RSPGB) is a net receiver while the energy market (RIGW) and cryptocurrency (RETHER) are the largest and least contributors to the transmission of the volatility. Additionally, the Baruník and Křehlík (2018) model confirmed that the magnitude of the total spillover is high in more prolonged than shorter periods, suggesting reduced diversification opportunities. Overall, the present study exemplifies the significance of the green bond market as protection against risk
How has internet addiction research evolved since the advent of internet gaming disorder? An overview of cyberaddictions from a psychological perspective
During the past two decades, Internet addiction (IA) has been the most commonly used term in research into online activities and their influence on the development of behavioral addictions. The aim of this review is to assess the impact of the concept of Internet gaming disorder (IGD), proposed by the American Psychiatric Association, on the scientific literature regarding IA. It presents a bibliometric analysis of the IA literature starting from the time IGD was first proposed, with the objective of observing and comparing the topics that have arisen during this period among the different IA themes researched. The findings demonstrate a steady evolution, particularly regarding publications related to the general aspects of IA: its clinical component, its prevalence and psychometric measures, the growing interest in the contextual factors promoting this addictive behavior, scientific progress in its conceptualization based on existing theoretical models, and neuropsychological studies. Nevertheless, many of the studies (22 %) focus on specific IA behaviors and show heterogeneity among the cyberaddictions, with online gaming (related to IGD) most common, followed by cybersex and social networking. Although research on the general concept of IA continues, investigators have begun to pay attention to the diverse spectrum of specific cyberaddictions and their psychological components
Entropy production rate is maximized in non-contractile actomyosin
The actin cytoskeleton is an active semi-flexible polymer network whose non-equilibrium properties coordinate both stable and contractile behaviors to maintain or change cell shape. While myosin motors drive the actin cytoskeleton out-of-equilibrium, the role of myosin-driven active stresses in the accumulation and dissipation of mechanical energy is unclear. To investigate this, we synthesize an actomyosin material in vitro whose active stress content can tune the network from stable to contractile. Each increment in activity determines a characteristic spectrum of actin filament fluctuations which is used to calculate the total mechanical work and the production of entropy in the material. We find that the balance of work and entropy does not increase monotonically and the entropy production rate is maximized in the non-contractile, stable state of actomyosin. Our study provides evidence that the origins of entropy production and activity-dependent dissipation relate to disorder in the molecular interactions between actin and myosin
H2S biosynthesis and catabolism: new insights from molecular studies
Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue
DogCatcher allows loop-friendly protein-protein ligation
There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide. DogTag/DogCatcher was generated initially by splitting a Streptococcus pneumoniae adhesin. We optimized DogTag/DogCatcher through rational design and evolution, increasing reaction rate by 250-fold and establishing millimolar solubility of DogCatcher. When fused to a protein terminus, DogTag/DogCatcher reacts slower than SpyTag003/SpyCatcher003. However, inserted in loops of a fluorescent protein or enzyme, DogTag reacts much faster than SpyTag003. Like many membrane proteins, the ion channel TRPC5 has no surface-exposed termini. DogTag in a TRPC5 extracellular loop allowed normal calcium flux and specific covalent labeling on cells in 1 min. DogTag/DogCatcher reacts under diverse conditions, at nanomolar concentrations, and to 98% conversion. Loop-friendly ligation should expand the toolbox for creating protein architectures
Characteristic features of winter precipitation and its variability over northwest India
- …
