710 research outputs found

    Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting

    Full text link
    The smart metering infrastructure has changed how electricity is measured in both residential and industrial application. The large amount of data collected by smart meter per day provides a huge potential for analytics to support the operation of a smart grid, an example of which is energy demand forecasting. Short term energy forecasting can be used by utilities to assess if any forecasted peak energy demand would have an adverse effect on the power system transmission and distribution infrastructure. It can also help in load scheduling and demand side management. Many techniques have been proposed to forecast time series including Support Vector Machine, Artificial Neural Network and Deep Learning. In this work we use Long Short Term Memory architecture to forecast 3-day ahead energy demand across each month in the year. The results show that 3-day ahead demand can be accurately forecasted with a Mean Absolute Percentage Error of 3.15%. In addition to that, the paper proposes way to quantify the time as a feature to be used in the training phase which is shown to affect the network performance

    RXRα acts as a carrier for TR3 nuclear export in a 9-cis retinoic acid-dependent manner in gastric cancer cells

    Get PDF
    Retinoid X receptor (RXR) plays a crucial role in the cross talk between retinoid receptors and other hormone receptors including the orphan receptor TR3, forming different heterodimers that transduce diverse steroid/thyroid hormone signaling. Here we show that RXRalpha exhibits nucleocytoplasmic shuttling in MGC80-3 gastric cancer cells and that RXRalpha, shuttling is energy-dependent through a nuclear pore complex (NPC)mediated pathway for its import and an intact DNA binding domain-mediated pathway for its export. In the presence of its ligand 9-cis retinoic acid, RXRalpha was almost exclusively located in the cytoplasm. More importantly, we also show that RXRalpha. acts as a carrier to assist translocation of TR3, which plays an important role in apoptosis. Both RXRalpha and TR3 colocalized in the nucleus; however, upon stimulation by 9-cis retinoic acid they cotranslocated to the cytoplasm and then localized in the mitochondria. TR3 export depends on RXRalpha as in living cells GFP-TR3 alone did not result in export from the nucleus even in the presence of 9-cis retinoic acid, whereas GFP-TR3 cotransfected with RXRalpha was exported out of the nucleus in response to 9-cis retinoic acid. Moreover, specific reduction of RXRalpha levels caused by anti-sense RXRalpha abolished TR3 nuclear export. In contrast, specific knockdown of TR3 by antisense-TR3 or TR3-siRNA did not affect RXRalpha shuttling. These results indicate that RXRalpha is responsible for TR3 nucleocytoplasmic translocation, which is facilitated by the RXRalpha ligand 9-cis retinoic acid. In addition, mitochondrial TR3, but not RXRalpha was critical for apoptosis, as TR3 mutants that were distributed in the mitochondria induced apoptosis in the presence or absence of 9-cis retinoic acid. These data reveal a novel aspect of RXRalpha function, in which it acts as a carrier for nucleocytoplasmic translocation of orphan receptors

    On solitary wave diffraction by multiple, in-line vertical cylinders

    Get PDF
    The interaction of solitary waves with multiple, in-line vertical cylinders is investigated. The fixed cylinders are of constant circular cross section and extend from the seafloor to the free surface. In general, there are N of them lined in a row parallel to the incoming wave direction. Both the nonlinear, generalized Boussinesq and the Green–Naghdi shallow-water wave equations are used. A boundary-fitted curvilinear coordinate system is employed to facilitate the use of the finite-difference method on curved boundaries. The governing equations and boundary conditions are transformed from the physical plane onto the computational plane. These equations are then solved in time on the computational plane that contains a uniform grid and by use of the successive over-relaxation method and a second-order finite-difference method to determine the horizontal force and overturning moment on the cylinders. Resulting solitary wave forces from the nonlinear Green–Naghdi and the Boussinesq equations are presented, and the forces are compared with the experimental data when available.</p

    Self-Cleaning Glass of Photocatalytic Anatase TiO2@Carbon Nanotubes Thin Film by Polymer-Assisted Approach

    Get PDF
    Due to the good photocatalytic activity, the TiO2@CNTs thin film is highly desirable to apply to the self-cleaning glass for green intelligent building. Here, the TiO2@CNTs thin film has been successfully achieved by polymer-assisted approach of an aqueous chemical solution method. The polymer, polyethylenimine, aims to combine the Ti4+ with CNTs for film formation of TiO2@CNTs. The resultant thin film was uniform, highly transparent, and super-hydrophilic. Owing to fast electron transport and effectively hindering electron-hole recombination, the TiO2@CNTs thin film has nearly twofold photocatalytic performance than pure TiO2. The TiO2@CNTs thin films show a good application for self-cleaning glasses

    On-Site Evaluation and Improvement Strategies of Radiation Occupational Hazard Prevention and Control Effectiveness in Medical Institution Construction Projects

    Get PDF
    Hong-Xia Xie,1 Ming-Qing Zhang,1 Zhi-Xiang Li,1 Huai-Liang Zhao2 1Jinan Hospital, Jinan, Shandong, 250013, People’s Republic of China; 2Department of Occupational Health Evaluation, Heilongjiang Provincial second Hospital, Harbin, Heilongjiang, 150001, People’s Republic of ChinaCorrespondence: Huai-Liang Zhao, Email [email protected]: To evaluate the control effectiveness of medical institution construction projects, and to summarize and analyze the radiation protection management status and improvement strategies of relevant medical institutions.Methods: A total of 40 medical institutions in our city were evaluated for control effectiveness through measures such as data research, on-site investigations, equipment quality testing, and radiation health protection inspections.Results: The compliance rates of personnel configuration, verification of protective measures, and radiation protection management and emergency response were 95.0%, 67.5%, and 70.0%, respectively. Compared to earlier evaluation periods (eg, before the implementation of new DR performance testing standards, where compliance rates were below 60%), there has been a marked improvement in compliance with performance and protection testing, particularly after the introduction of updated evaluation criteria. The first-pass rates of performance testing for DSA, DR, CT, and dental equipment were 100%, 84.0%, 92.0%, and 100%, respectively. The first-pass rates of radiation protection inspection for related equipment rooms were 100%, 100%, 92.0%, and 100%, respectively. New DR performance testing standards introduced specialized testing items, such as dark noise, detector dose indication (DDI), and signal transmission characteristics (STP), which presented initial challenges due to the unavailability of pre-processing images in some manufacturers’ products. Additionally, higher monitoring values were identified at doors, door gaps, and cable penetration points in equipment rooms. Regarding radiation protection management and emergency response, issues such as overly rigid emergency response plans, insufficient personal dose management, and inadequate occupational health examinations remain, requiring systematic adjustments.Conclusion: At present, the awareness of radiation hazard prevention and control in medical institutions has been improved. Compared to earlier periods of testing and evaluation, there has been a significant improvement in the degree of compliance with performance and protection testing. Medical institutions have strengthened equipment annual inspections, quality control, and other management work, further enhancing the level of radiation protection management.Keywords: radiation health management, medical institution, construction project, radiation occupational hazard, prevention and control effectiveness, on-site evaluation, improvement strategie

    Particle breakage of sand subjected to friction and collision in drum tests

    Get PDF
    This paper presents a laboratory experimental study on particle breakage of sand subjected to friction and collision, by a number of drum tests on granular materials (silica sand No. 3 and ceramic balls) to investigate the characteristics of particle breakage and its effect on the characteristics of grain size distribution of sand. Particle breakage increased in up convexity with increasing duration of drum tests, but increased linearly with increasing number of balls. Particle breakage showed an increase, followed by a decrease while increasing the amount of sand. There may be existence of a characteristic amount of sand causing a maximum particle breakage. Friction tests caused much less particle breakage than collision tests did. Friction and collision resulted in different mechanisms of particle breakage, mainly by abrasion for friction and by splitting for collision. The fines content increased with increasing relative breakage. Particle breakage in the friction tests (abrasion) resulted in a sharper increase but with a smaller total amount of fines content in comparison with that in the collision tests (splitting). For the collision tests, the fines content showed a decrease followed by an increase as the amount of sand increased, whereas it increased in up convexity with increasing number of balls. The characteristic grain sizes D10 and D30 decreased in down convexity with increasing relative breakage, which could be described by a natural exponential function. However, the characteristic grain sizes D50 and D60 decreased linearly while increasing the relative breakage. In addition, the coefficients of uniformity and curvature of sand showed an increase followed by a decrease while increasing the relative breakage. and decreased in down convexity with increasing relative breakage, which could be described by a natural exponential function. However, the characteristic grain sizes and decreased linearly while increasing the relative breakage. In addition, the coefficients of uniformity and curvature of sand showed an increase followed by a decrease while increasing the relative breakage.National Natural Science Foundation of China (Grant No. 41807268), the “Belt & Road” International Cooperation Team for the “Light of West” Program of Chinese Academy of Sciences (Lijun Su), China, the Youth Innovation Promotion Association of Chinese Academy of Sciences, China (Grant No. 2018408); China Postdoctoral Science Foundation (Grant No. 2019T120864)

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.

    Get PDF
    BACKGROUND: The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS: This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place

    Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain

    Get PDF
    Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, Salmonella Typhimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do
    corecore