221 research outputs found
Biodynamics of Hepatitis C Virus in Haemodialysis Patients in Pahang
Introduction: HCV infection is frequent in patients undergoing maintenance haemodialysis, with prevalence between 8 and 10%. Hepatitis C has an adverse effect on both patient and graft survival in those who get renal transplants. There are relatively scarce reports on the natural fluctuation in viral load level in patients on chronic haemodialysis. Materials and Methods: This is a longitudinal short-term three months study, where 27 chronic haemodialysis patients infected with known HCV genotypes were recruited from seven haemodialysis centres in Pahang. Serum samples were collected monthly, both pre- and post-haemodialysis sessions, over a period of three months. Viral RNA was extracted from serum using QIAamp Viral RNA Extraction kit (Qiagen). The HCV viral load was measured using one-step reverse transcriptase qPCR (Applied Biosystems) targeting the 5`HCV non-coding region (5’UTR). The serum α-IFN level was measured using commercial ELISA kit (Amersham, UK). Six biochemical liver function tests (AST, ALP, TP, albumin, ALT and TB) were also done for all pre-haemodialysis samples. Results: All patients showed persistent low level viral load that varied significantly over the study period (p = 0.001). HCV genotype 1 viral load was significantly higher than that of genotype 3. Conclusion: No apparent correlation could be recognized between the viral loads and the corresponding interferon-alpha levels which were detectable in only a few patients during the period of study
Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques.
Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Sidelobe reduction of unequally spaced arrays for 5G applications
Unequally spaced arrays technique offers an alternative for limited sidelobe level reduction compared to conventional array antennas with equally spaced elements. In this paper, the abilities and design of microstrip linear array antenna, fed by multiport feeding with uniform excitation coefficient in all array elements are presented for sidelobe level reduction at 28 GHz. By using the proximity coupled feed, simulation result gave -10 dB impedance bandwidth of 1.42 GHz and reflection coefficient of -35.5 dB has been achieved. The sidelobe level at broadside decreased from -11.77 dB to -14.76 dB (N = 4) and -12.77 dB to -15.98 dB (N = 8) with unequally spaced array. This feature is suitable for 5G applications
Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector
This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}4.6\;{\rm f}{{{\rm b}}^{-1}}{{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}|\eta |\lt 1.9{{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
Unusual finding of endocervical-like mucinous epithelium in continuity with urothelium in endocervicosis of the urinary bladder
Endocervicosis in the urinary bladder is a rare benign condition. We present a case in a 37-year-old woman with classical clinical and pathological features of endocervicosis. The unusual observation of endocervical-like mucinous epithelium in continuity with the urothelium in addition to fully developed endocervicosis prompted immunohistochemical profiling of the case using antibodies to cytokeratins (AE1/AE3, CK19, CK7, CK5/6, CK20), HBME-1, estrogen receptor (ER) and progesterone receptor (PR) to assess the relationship of the surface mucinous and endocervicosis glandular epithelia. The surface mucinous epithelium, urothelium and endocervicosis glands were immunopositive for AE1/AE3, CK7 and CK19 while CK20 was only expressed by few urothelial umbrella cells. The surface mucinous epithelium was CK5/6 and HBME-1 immunonegative but showed presence of ER and PR. This was in contrast to the urothelium's expression of CK5/6 but not ER and PR. In comparison, endocervicosis glands expressed HBME-1, unlike the surface mucinous epithelium. The endocervicosis epithelium also demonstrated the expected presence of ER and PR and CK5/6 immunonegativity. The slightly differing immunohistochemical phenotypes of the surface mucinous and morphologically similar endocervicosis glandular epithelium is interesting and requires further clarification to its actual nature. The patient has remained well and without evidence of disease 18-months following transurethral resection of the lesion
Single domain antibodies: promising experimental and therapeutic tools in infection and immunity
Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes
Modulation of purinergic signaling by NPP-type ectophosphodiesterases
Extracellular nucleotides can elicit a wide array of cellular responses by binding to specific purinergic receptors. The level of ectonucleotides is dynamically controlled by their release from cells, synthesis by ectonucleoside diphosphokinases and ectoadenylate kinases, and hydrolysis by ectonucleotidases. One of the four structurally unrelated families of ectonucleotidases is represented by the NPP-type ectophosphodiesterases. Three of the seven members of the NPP family, namely NPP1–3, are known to hydrolyze nucleotides. The enzymatic action of NPP1–3 (in)directly results in the termination of nucleotide signaling, the salvage of nucleotides and/or the generation of new messengers like ADP, adenosine or pyrophosphate. NPP2 is unique in that it hydrolyzes both nucleotides and lysophospholipids and, thereby, generates products that could synergistically promote cell motility. We review here the enzymatic properties of NPPs and analyze current evidence that links their nucleotide-hydrolyzing capability to epithelial and neural functions, the immune response and cell motility
ADP-ribosylation of arginine
Arginine adenosine-5′-diphosphoribosylation (ADP-ribosylation) is an enzyme-catalyzed, potentially reversible posttranslational modification, in which the ADP-ribose moiety is transferred from NAD+ to the guanidino moiety of arginine. At 540 Da, ADP-ribose has the size of approximately five amino acid residues. In contrast to arginine, which, at neutral pH, is positively charged, ADP-ribose carries two negatively charged phosphate moieties. Arginine ADP-ribosylation, thus, causes a notable change in size and chemical property at the ADP-ribosylation site of the target protein. Often, this causes steric interference of the interaction of the target protein with binding partners, e.g. toxin-catalyzed ADP-ribosylation of actin at R177 sterically blocks actin polymerization. In case of the nucleotide-gated P2X7 ion channel, ADP-ribosylation at R125 in the vicinity of the ligand-binding site causes channel gating. Arginine-specific ADP-ribosyltransferases (ARTs) carry a characteristic R-S-EXE motif that distinguishes these enzymes from structurally related enzymes which catalyze ADP-ribosylation of other amino acid side chains, DNA, or small molecules. Arginine-specific ADP-ribosylation can be inhibited by small molecule arginine analogues such as agmatine or meta-iodobenzylguanidine (MIBG), which themselves can serve as targets for arginine-specific ARTs. ADP-ribosylarginine specific hydrolases (ARHs) can restore target protein function by hydrolytic removal of the entire ADP-ribose moiety. In some cases, ADP-ribosylarginine is processed into secondary posttranslational modifications, e.g. phosphoribosylarginine or ornithine. This review summarizes current knowledge on arginine-specific ADP-ribosylation, focussing on the methods available for its detection, its biological consequences, and the enzymes responsible for this modification and its reversal, and discusses future perspectives for research in this field
- …
