22 research outputs found
Cholesterol improves the transfection efficiency of polyallylamine as a non-viral gene delivery vector
Polymeric micelles for delivery of poorly soluble drugs: Preparation and anticancer activity in vitro
Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo
Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines
Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests
Anionic liposomal delivery system for DNA transfection
The present study investigates the use of novel anionic lipoplexes composed of physiological components for plasmid DNA delivery into mammalian cells in vitro. Liposomes were prepared from mixtures of endogenously occurring anionic and zwitterionic lipids, 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DOPG) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), respectively, at a molar ratio of 17∶83 (DOPG:DOPE). Anionic lipoplexes were formed by complexation between anionic liposomes and plasmid DNA molecules encoding green fluorescence protein (GFP) using Ca2+ ions. Transfection and toxicity were evaluated in CHO-K1 cells using flow cytometry and propidium iodide staining, respectively. Controls included Ca2+-DNA complexes (without lipids), anionic liposomes (no Ca2+), and a cationic liposomal formulation. Efficient delivery of plasmid DNA and subsequent GFP expression was achieved using anionic lipoplexes. Transfection efficiency increased with Ca2+ concentration up to 14 mM Ca2+, where transfection efficiency was 7-fold higher than in untreated cells, with minimum toxicity. Further increase in Ca2+ decreased transfection. Transfection efficiency of anionic lipoplexes was similar to that of cationic liposomes (lipofect Amine), whereas their toxicity was significantly lower. Ca2+-DNA complexes exhibited minimal and irregular transfection with relatively high cytotoxicity. A model was developed to explain the basis of anionic lipoplex uptake and transfection efficacy. Effective transfection is explained on the formation of nonbilayer hexagonal lipid phases. Efficient and relatively safe DNA transfection using anionic lipoplexes makes them an appealing alternative to be explored for gene delivery
Development and Evaluation of Chitosan-Coated Liposomes for Oral DNA Vaccine: The Improvement of Peyer’s Patch Targeting Using a Polyplex-Loaded Liposomes
The aim of this study was to develop chitosan-coated and polyplex-loaded liposomes (PLLs) containing DNA vaccine for Peyer’s patch targeting. Plain liposomes carrying plasmid pRc/CMV-HBs were prepared by the reverse-phase evaporation method. Chitosan coating was carried out by incubation of the liposomal suspensions with chitosan solution. Main lipid components of liposomes were phosphatidylcholine/cholesterol. Sodium deoxycholate and dicetyl phosphate were used as negative charge inducers. The zeta potentials of plain liposomes were strongly affected by the pH of the medium. Coating with chitosan variably increased the surface charges of the liposomes. To increase the zeta potential and stability of the liposome, chitosan was also used as a DNA condensing agent to form a polyplex. The PLLs were coated with chitosan solution. In vivo study of PLLs was carried out in comparison with chitosan-coated liposomes using plasmid encoding green fluorescence protein as a reporter. A single dose of plasmid equal to 100 μg was intragastrically inoculated into BALB/c mice. The expression of green fluorescence protein (GFP) was detected after 24 h using a confocal laser scanning microscope. The signal of GFP was obtained from positively charged chitosan-coated liposomes but found only at the upper part of duodenum. With chitosan-coated PLL540, the signal of GFP was found throughout the intestine. Chitosan-coated PLL demonstrated a higher potential to deliver the DNA to the distal intestine than the chitosan-coated liposomes due to the increase in permanent positive surface charges and the decreased enzymatic degradation
